

PRELIMINARY DATA SHEET

SE2605L: High Power (+26 dBm) 802.11n WLAN Power Amplifier with Integrated Power Detector

Applications

- IEEE 802.11n WLAN enabled:
 - Access points
 - Media gateways
 - Set top boxes
 - LCD TVs
- · Other broadband triple-play multimedia applications

Features

Linear output power for IEEE 802.11n, 64-QAM, EVM \leq 3% = +26 dBm @ 5.0 V

- High gain: 32 dB
- Power shutdown mode
- Superior gain flatness
- Fully matched at RF input/output ports
- · Load insensitive power detector
- Small footprint QFN (16-pin, 3 x 3 mm) SMT package (MSL3, 260 °C per JEDEC J-STD-020)

Skyworks GreenTM products are compliant with all applicable legislation and are halogen-free. For additional information, refer to *Skyworks Definition of Green*TM, document number SQ04–0074.

Description

The SE2605L is a 2 GHz Microwave Monolithic Integrated Circuit (MMIC) Power Amplifier (PA) with superior output power, linearity, and efficiency. These features make the SE2605L ideal for Wireless Local Area Network (WLAN IEEE 802.11n) applications.

The device is fabricated using SiGe BiCMOS technology. The device is internally matched and mounted in a 20-pin, 4 x 4 mm Quad Flat No-Lead (QFN) Surface-Mounted Technology (SMT) package, which allows for a highly manufacturable low cost solution.

A block diagram of the SE2605L is shown in Figure 1.The device package and pinout for the 16-pin QFN are shown in Figure 2. Signal pin assignments and functional pin descriptions are described in Table 1.

Table 1. SE2605L Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	RF_IN	RF Input	9	GND	Ground
2	EN	Power amplifier enable	10	RF_OUT	RF output
3	GND	Ground	11	RF_OUT	RF output
4	VCC0	Power supply for bias circuit	12	GND	Ground
5	GND	Ground	13	VCC2	Power supply for second stage
6	GND	Ground	14	N/C	Not connected. Can be left floating or grounded.
7	DET	Power detector output	15	VCC1	Power Supply driver stages
8	N/C	Not connected. Can be left floating or grounded.	16	GND	Ground

Technical Description

The SE2605L PA contains all of the needed RF matching and DC biasing circuits. The device also provides an output power detector voltage.

The SE2605L is a three-stage, SiGe BiCMOS device optimized for high linearity and power efficiency. These features make the device suitable for wideband digital applications, where PA linearity and power consumption are of critical importance (e.g., WiFi systems or WLANs).

The device has been characterized with the highest specified data rates for IEEE 802.11n (64 QAM). Under these stringent test conditions, the device exhibits excellent spectral purity and power efficiency.

Electrical and Mechanical Specifications

The absolute maximum ratings of the SE2605L are provided in Table 2. Recommended operating conditions are specified in Table 3. Electrical specifications are provided in Tables 4, 5, and 6.

Parameter	Symbol	Minimum	Maximum	Units
Supply voltage	VCC1, VCC2, VCC3	-0.3	+5.5	V
Enable voltage	PA_EN	-0.3	+3.6	V
RF input power	Pin		+12	dBm
Operating temperature	Тор	-40	+85	°C
Storage temperature	Тѕт	-40	+150	°C
Junction temperature	TJ		+160	°C
Thermal resistance	ΘJC		13	°C/W
Electrostatic discharge:	ESD			
Human Body Model (HBM), Class 1C			1000	V

Table 2. SE2605L Absolute Maximum Ratings¹

¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.

Table 3. SE2605L Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply voltage	VCC1, VCC2, VCC3	3.0	5.00	5.25	V
Enable voltage	PA_EN	1.8		3.6	V
Case operating temperature	Тор	-40	+25	+85	°C

Table 4. SE2605L Electrical Specifications: DC Characteristics¹

Parameter	Symbol	Test Condition	Min	Typical	Мах	Units
Supply current	Icc	802.11n:				
		Pout = +26 dBm, MCS7, 54 Mbps, 64 QAM	400	500	560	mA
		Pout = +29 dBm, 11Mbps, CCK signal, BT = 0.45	600	650	690	μΑ
		$PA_EN = 0 V$, No RF		10	100	
Quiescent Current	Icq	No RF		220		mA
Enable voltage: High Low	PAEN_H PAEN_L		1.8 0		3.6 0.5	V V
Enable current	IEN			300		μA
Enable pin input impedance	Zen	Passive pull down		10		kΩ

¹ Performance is guaranteed only under the conditions listed in this table.

Parameter	Symbol	Test Condition	Min	Typical	Мах	Units
Frequency range	f		2.4		2.5	GHz
Output power	Роит	54 Mbps OFDM signal, 64 QAM, 3% EVM	+24	+26		dBm
		11 Mbps CCK signal, $BT = 0.045$, mask	+27	+29		dBm
1 dB output compression point	0P1dB	PIN = CW	+29	+32		dBm
Small signal gain	S21		30	33	36	dB
Input return loss	S11		10	15		dB
Gain variation	∆ S21	Over 40 MHz channel Over entire band		0.5 1.0		dB dB
2 nd and 3 rd harmonics	2fo, 3fo	POUT = +29 dBm		-50	-45	dBm/MHz
Rise and fall time	tR, tF	50% of VEN edge to 10%/90% of final power level		0.5		μs
Stability		POUT = +29 dBm, VSWR = 4:1, all phases	All non-harmonically related outputs < -42 dBm/MHz			
Ruggedness	Ru	PIN = +12dBm, 50% duty cycle, VSWR = 6:1, all phases	No damage			

Table 5. SE2605L Electrical Specifications: General¹ (VCC1 = VCC2 = VCC3 = 5.0 V, PA EN = 3.3 V, T_{OP} = +25 °C, Unless Otherwise Noted)

¹ Performance is guaranteed only under the conditions listed in this table.

Table 6. SE2605L Electrical Specifications: Power Detector Characteristics¹ (VCC = 5.0 V, PA_EN = 3.3 V, ToP = +25 °C, f = 2.45 GHz, Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Output power detector range	PDR		0		0P1dB	dBm
Detector voltage	VDET	POUT = +30 dBm	0.90	1.00	1.15	V
		POUT = +26 dBm	0.65	0.73	0.82	V
		POUT = 5 dB	0.30	0.33	0.36	V
Detector accuracy	ERRDET	VSWR = 3:1 -1.5 to +1.5 dB	-1.5		+1.5	dB
Output impedance	PDZout			2.3		kΩ
DC load impedance	PDZLOAD			26.5		kΩ

¹ Performance is guaranteed only under the conditions listed in this table.

Evaluation Board Description

The SE2605L Evaluation Board is used to test the performance of the SE2605L WLAN PA. A schematic diagram of the SE2605L Evaluation Board is shown in Figure 3. A photograph of the Evaluation Board is shown in Figure 4. Component values for the SE2605L Evaluation Board are listed in Table 7.

Circuit Design Considerations

The following design considerations are general in nature and must be followed regardless of final use or configuration:

- Paths to ground should be made as short as possible.
- The ground pad of the SE2605L has special electrical and thermal grounding requirements. This pad is the main thermal conduit for heat dissipation. Since the circuit board acts as the heat sink, it must shunt as much heat as possible from the device.
- Therefore, design the connection to the ground pad to dissipate the maximum wattage produced by the circuit board. Multiple vias to the grounding layer are required. For further information, refer to the Skyworks Application Note *PCB Design Guidelines for High Power Dissipation Packages*, document number 201211.
- Bypass capacitors should be used on the DC supply lines. Refer to the schematic drawing in Figure 3 for further details.

- The RF lines should be well separated from each other with solid ground in between traces to maximize input-to-output isolation.
- **NOTE:** A poor connection between the slug and ground increases junction temperature (T_J), which reduces the life of the device.

Evaluation Board Setup Procedure

- 1. Connect system ground to pin 1 of connector J5.
- 2. Apply 5.0 V to pins 3 and 4 of connector J5.
- 3. By applying 3.3 V on PA_EN (pin 1 of the J4 header), the PA is enabled. By placing a ground on PA_EN, the PA is disabled and placed in a shutdown state, drawing minimal current.
- 4. The 2 GHz amplifier performance can be monitored by applying an RF signal to connector J1 (RF_IN). Monitor the output power on the RF_OUT port connector, J1.

Detector performance can be monitored on pin 4 of connector J4.

CAUTION: Do not overdrive the amplifier by applying too much RF on the device input. A suitable starting input power setting is –20 dBm.

Figure 3. SE2605L Evaluation Board Schematic

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com February 10, 2016 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice • 203009E

Figure 4. SE2605L Evaluation Board

Table 7. SE2605L Evaluation Board Bill of Materials	Table 7. SE20	605L Evaluatio	on Board Bill	of Materials
---	---------------	-----------------------	---------------	--------------

Component	Quantity	Value	Vendor	Part Number
C2,C4,C7,C9,C10,C19	6	DNI		
C3	1	1 μF	Murata	GRM155R60J105KE19
C5	1	10 Pf	Murata	GRM1555C1H100JZ01
C6	1	1 nF	Murata	GRM155R71H102KA01
C11	1	4.7 μF	Murata	GRM188R60J475KE19
C12	1	2.2 pF	Murata	GRM1555C1H2R2CZ01
C14 and C16	2	2.4 pF	Murata	GRM1555C1H2R4CZ01
C15	1	1.2 pF	Murata	GRM1555C1H150JZ01
C17	1	3.3 pF	Murata	GRM1555C1H1R2CZ01
C18	1	27 Ω	Murata	GRM1555C1H3R3CZ01
C20	1	100 nF	Murata	GRM155R61A104KA01
J1 and J2	2	SMA	Johnson	142-0701-851
J4	1	Header 4	Samtec	TSW-104-07-G-S
J5	1	Header 5	Samtec	TSW-105-07-G-S
L3	1	1.5 nH	Murata	LQG15HN1N5S02D
PCB1	1	Z264-B	Skyworks	Z264-B
R1	1	26.7 K	Panasonic	ERJ2RKF2672
R2	1	91 Ω	Panasonic	ERJ2GEJ910
R3	1	0 Ω	Panasonic	ERJ3GEJ0R0
U1		SE2605L	Skyworks	SE2605L

Package Dimensions

The PCB layout footprint for the SE2605L is provided in Figure 5. Typical part markings are shown in Figure 6. Package dimensions are shown in Figure 7, and tape and reel dimensions are provided in Figure 8.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SE2605L is rated to Moisture Sensitivity Level 3 (MSL3) at 260 °C. It can be used for lead or lead-free soldering. For additional information, refer to the Skyworks Application Note, *Solder Reflow Information*, document number 200164.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format.

Figure 5. PCB Layout Footprint for the SE2605L

5. Unless specified, dimensions are symmetrical about center lines.

Figure 7. SE2605L Package Dimensions

Figure 8. SE2605L Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Board Part Number
SE2605L High Power WLAN Power Amplifier	SE2605L	SE2605L-EK1

Copyright © 2012-2014, 2016 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.