

NTE1911 3 Terminal Adjustable Negative Voltage Regulator –1.2V to –37V, 1.5A

Description:

The NTE1911 is an adjustable 3–terminal negative voltage regulator capable of supplying in excess of 1.5A over an output voltage range of –1.2V to 37V. This regulator is exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, if features internal current limiting, thermal shutdown and safe–area compensation, making the, virtually blowout–proof against overloads.

The NTE1911 serves a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation.

Features:

- Output Voltage Adjustable from –1.2V to –37V
- 1.5A Output Current Guaranteed, –55°C to +150°C
- Line Regulation Typically 0.01%/V
- Load Regulation Typically 0.3%
- Excellent Thermal Regulation, 0.002%/W
- 77dB Ripple Rejection
- Excellent Rejection of Thermal Transients
- 50ppm/°C Temperature Coefficient
- Temperature–Independent Current Limit
- Internal Thermal Overload Protection

Absolute Maximum Ratings:

Power Dissipation, P _D	20W
Input–Output Voltage Differential, V _{I–O}	
Operating Junction Temperature Range, T _J	0° to +125°C
Storage Temperature Range, T _{stg}	. –65° to +150°C
Lead Temperature (Soldering, 10 sec), T _L	300°C

Electrical Characteristics: (Note 1)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Line Regulation	Reg _{line}	$T_A = +25^{\circ}C$, $3V \le V_I - V_O \le 40V$, Note 2	-	0.01	0.04	%/V
		$3V \le V_I - V_O \le 40V$, Note 2	-	0.02	0.07	%/V

Note 1. Unless otherwise noted, these specifications apply: $0^{\circ} \le T_J \le +125^{\circ}C$, $(V_I - V_O) = 5V$, $P_{max} = 20W$, and $I_{MAX} = 1.5A$.

Note 2. Load and line regulation are specified at constant junction temperature. Pulse testing with a low duty cycle is used. Change in V_O because of heating effects is covered under the Thermal Regulation specification.

Electrical Characteristics (Cont'd): (Note 1)

Parameter	Symbol	Test Conditions			Тур	Max	Unit
Load Regulation	Reg _{load}	$V_0 \le 5V$, Note 2	T_A = +25°C, 10mA $\leq I_O \leq$ 1.5A	-	15	50	mV
			$10mA \le I_O \le 3A$	-	20	70	mV
		$V_{O} \ge 5V$, Note 2	$T_A = +25^{\circ}C$, $10mA \le I_O \le 1.5A$	-	0.3	1.0	%
			$10mA \le I_O \le 3A$	-	0.3	1.5	%
Thermal Regulation	Reg _{therm}	$T_A = +25^{\circ}C$, Pulse = 10ms		-	0.003	0.04	%V _O /W
Adjustment Pin Current	I _{Adj}			-	65	100	μA
Adjustment Pin Current Change	ΔI_{Adj}	$\begin{array}{l} T_{A}=+25^{\circ}\\ 2.5V\leq (V_{I}$	-	0.2	5.0	μΑ	
Reference Voltage	V _{ref}	$\begin{array}{l} 10mA \leq I_O \leq 1.5A, \ 3V \leq (V_I - V_O) \leq 40V, \\ P \leq 20W, \ T_A = +25^\circ C, \ Note \ 3 \end{array}$		1.20	1.25	1.30	V
		$\begin{array}{l} 10mA \leq I_O \leq 1.5A, \; 3V \leq (V_I-V_O) \leq 40V, \\ P \leq 20W, \; Note \; 3 \end{array}$		1.213	1.250	1.287	V
Temperature Stability	Τ _S	$0^{\circ} \leq T_J \leq$	-	0.6	-	%V _O	
Minimum Load Current	I _{Lmin}	$V_{I} - V_{O} \leq$	10V	-	1.5	6.0	mA
		$V_I - V_O \le 40V$		-	2.5	10	mA
Maximum Output Current Limit	I _{max}	$V_{I} - V_{O} \leq$	15V, P ≤ 20W	1.5	2.2	-	A
		$V_{I} - V_{O} \leq$	40V, P \leq 20W, T _A = +25°C	0.15	0.4	-	A
RMS Noise, % of V_{O}	N	$T_A = +25^{\circ}C$, $10Hz \le f \le 10kHz$			0.003	_	%V _O
Ripple Rejection Ratio	RR	$V_{\rm O} = 10V_{\rm O}$	$f = 120Hz, C_{Adj} = 0$	-	60	-	dB
		$V_{O} = 10V$, f = 120Hz, $C_{Adj} = 10\mu F$			77	-	dB
Long Term Stability	S	T _A = +125°C, 1000 Hours			0.3	1.0	%/1.0k

Note 1. Unless otherwise noted, these specifications apply: $0^{\circ} \le T_J \le +125^{\circ}C$, $(V_I - V_O) = 5V$, $P_{max} = 20W$, and $I_{MAX} = 1.5A$.

- Note 2. Load and line regulation are specified at constant junction temperature. Pulse testing with a low duty cycle is used. Change in V_O because of heating effects is covered under the Thermal Regulation specification.
- Note 3. C_{Adj}, when used, is connected between the adjustment pin and GND.

