PHOTONIC Silicon Photodiode, Blue Enhanced Photoconductive DETECTORS INC. Isolated Type PDB-C120-I #### **FEATURES** - High speed - Low capacitance - Blue enhanced - Low dark current #### **DESCRIPTION** The **PDB-C120-I** is a silicon, PIN planar diffused, blue enhanced photodiode. Ideal for high speed photoconductive applications. Packaged in a hermetic TO-18 metal can with a flat window and isolated ground lead. #### **APPLICATIONS** - Fiber optic - Laser detection - Light demodulation - · Matched to I.R. LEDs ### ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted) | SYMBOL | PARAMETER | MIN | MAX | UNITS | |------------------|-----------------------------|-----|------|-------| | V_{BR} | Reverse Voltage | | 200 | V | | T _{STG} | Storage Temperature | -65 | +150 | ∘C | | T _o | Operating Temperature Range | -55 | +125 | ∘C | | T _s | Soldering Temperature* | | +240 | ∘C | | IL | Light Current | | 0.5 | mA | ^{*1/16} inch from case for 3 secs max ## **SPECTRAL RESPONSE** WAVELENGTH (nm) # ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted) | (17.1-25 & different field) | | | | | | | | | |-----------------------------|----------------------------|--------------------------------|-----|-----------------------|------|-------------------|--|--| | SYMBOL | CHARACTERISTIC | TESTCONDITIONS | MIN | TYP | MAX | UNITS | | | | l _{sc} | Short Circuit Current | H = 100 fc, 2850 K | 1.2 | 1.5 | | μΑ | | | | I _D | Dark Current | $H = 0, V_R = 10 V$ | | 0.5 | 2.0 | nA | | | | R _{SH} | Shunt Resistance | $H = 0, V_R = 10 \text{ mV}$ | 400 | 500 | | ΜΩ | | | | TCR _{SH} | RSH Temp. Coefficient | $H = 0, V_R = 10 \text{ mV}$ | | -8 | | %/℃ | | | | C _J | Junction Capacitance | H = 0, V _R = 10 V** | | 1 | | pF | | | | λ range | Spectral Application Range | Spot Scan | 350 | | 1100 | nm | | | | λр | Spectral Response - Peak | Spot Scan | | 950 | | nm | | | | V _{BR} | Breakdown Voltage | I = 10 μA | 100 | 150 | | V | | | | NEP | Noise Equivalent Power | V _R = 10 V @ Peak | | 9.0x10 ⁻¹⁵ | | W/√ Hz | | | | tr | Response Time | $RL = 1 K\Omega V_p = 50 V$ | | 1.0 | | nS | | |