
 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Introduction to the OSD335x Reference Design Tutorial Series

The OSD335x family of System-In-Package (SiP) devices serves as a solid foundation

to build advanced embedded systems quickly with reduced time to market. These SiPs

tightly integrate Texas Instrument (TI)’s AM335x ARM® Cortex® A8 CPU, TPS65217C

Power Management IC (PMIC), TL5209 LDO, up to 1GB of DDR3 and all associated

passives. All of which is contained in a US quarter sized package as shown in Figure 1.

At Octavo Systems, we are committed to simplifying your design as much as possible

so that you can quickly start designing and building your dream products. With this

intent in mind, we have developed the OSD335x Reference Design Tutorial Series,

which will walk you through the OSD335x design process in a systematic manner.

Figure 1 OSD335x in comparison with US quarter

The tutorial series is broken down into several lessons. Each lesson will address

specific concepts and build upon the concepts of previous lessons. Each lesson will

conclude with a Printed Circuit Board (PCB), which will implement and verify all of

the concepts taught. The lessons will begin with the basics and then take you through

advanced concepts.

Each lesson will cover:

Lesson 1: You will learn how to build the bare minimum circuitry required to boot the

OSD335x without an operating system and all the concepts related to it. Lesson 1

tutorials are found in chapters 1-11.

Lesson 2: You will learn how to build the minimum circuitry required to Boot Linux on

the OSD335x and all the concepts related to it. Lesson 2 tutorials are found in

chapters 12-18.

Both Lesson 1 and Lesson 2 Tutorials can be applied easily to the OSD335x-SM device

by following the additional information provided on the OSD335x-SM Design Tutorial

webpage.

https://octavosystems.com/family/osd335x/
https://octavosystems.com/app_notes/osd335x-design-tutorial/
https://octavosystems.com/app_notes/osd335x-design-tutorial/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/
https://octavosystems.com/app_notes/osd335x-sm-design-tutorial/
https://octavosystems.com/app_notes/osd335x-sm-design-tutorial/

2

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Table of Contents

1 Before You Begin ... 8

1.1 Fundamentals of the OSD335x ... 8

1.2 Lesson organization .. 9

1.3 Pre-requisites ... 10

2 Introduction to Bare Minimum Circuitry to Boot OSD335x............................ 11

2.1 Introduction .. 11

2.2 CAD Environment Setup ... 12

2.2.1 Library Setup .. 12

2.2.2 Schematic setup .. 12

2.2.3 Layout (Board) Setup: .. 13

2.3 OSD3358-512M-BAS pin distribution ... 15

3 OSD335x Power Inputs and Outputs ... 16

3.1 Introduction .. 16

3.2 Power Input ... 16

3.2.1 VIN_AC ... 16

3.2.2 VIN_USB .. 17

3.2.3 VIN_BAT .. 17

3.3 Input Power Schematics .. 18

3.4 Input Power Layout .. 19

3.5 Power output ... 20

3.6 Test points on internal power rails .. 21

3.7 Schematics for power output pins and test points on internal power rails ... 22

3.8 Layout for test points on internal power rails 22

3.9 Analog reference input and ground ... 23

4 OSD335x Ground Connections .. 25

4.1 Introduction .. 25

4.2 Ground Connections ... 25

4.3 Ground pour layout discussion: .. 25

4.4 Power and Ground Planes .. 28

3
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

5 OSD335x Power Management ... 31

5.1 Introduction .. 31

5.2 I2C interface .. 31

5.3 PMIC control and status ... 33

5.4 Power button ... 35

5.5 Power indicator LED ... 38

6 OSD335x Clamping Circuit ... 40

6.1 Introduction .. 40

6.2 AM335x Power-Down Requirements ... 40

6.3 Clamping circuit .. 41

6.3.1 Phase 1 – AM335x in normal operation / just before power down

(Clamping circuit in standby): .. 42

6.3.2 Phase 2 – AM335x power down sequence begins (Clamping circuit actively

maintaining the voltage difference between the two power rails): 43

6.3.3 Phase 3 - End of AM335x power down sequence (Clamping circuit back to

standby): .. 45

7 OSD335x ESD Protection ... 48

7.1 Introduction .. 48

7.2 ESD protection ... 48

8 OSD335x Reset Circuitry ... 51

8.1 Introduction .. 51

8.2 Reset Types ... 51

8.2.1 Cold reset .. 51

8.2.2 Warm reset .. 51

8.3 Reset external connections... 53

9 OSD335x Clock Circuitry ... 57

9.1 Introduction .. 57

9.2 The OSD335x OSC0 and OSC1 .. 57

9.3 Layout guidelines .. 61

9.4 RTC_KALDO_ENN ... 62

10 OSD335x Peripheral Circuitry ... 64

10.1 Introduction .. 64

4

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

10.2 JTAG ... 64

10.3 Boot configuration .. 66

10.4 Buttons and LEDs .. 68

10.5 Peripheral header ... 70

10.6 Finalizing the silkscreen .. 71

10.7 Expected outcome .. 72

10.8 PCB order process ... 74

11 OSD335x Bare Minimum Board Boot Process .. 75

11.1 Introduction .. 75

11.2 The Board (PCB) ... 75

11.3 Basic board bring-up .. 75

11.3.1 Tests before board power-up ... 75

11.3.2 Possible problems after board power-up 77

11.3.3 Tests after power-up ... 77

11.4 Setting up software environment (for Windows 7,8 and 10 OS) 79

11.4.1 Installing Code Composer Studio ... 79

11.4.2 Installing StarterWare .. 80

11.4.3 Debugger ... 80

11.5 Demo Applications .. 81

11.5.1 Demo Application 1: LED Dimmer .. 81

11.5.2 Running Demo Application 1 .. 81

11.5.3 Demo Application 2: Motion Detector ... 90

11.5.4 Running Demo Application 2 .. 90

12 Introduction to Bare Minimum Circuitry for Linux Boot 93

12.1 Introduction .. 93

12.2 CAD Environment Setup .. 94

12.2.1 Library Setup .. 95

12.2.2 Schematic Setup .. 95

12.2.3 Layout (Board) Setup ... 96

12.3 OSD3358-512M-BAS Pin Distribution .. 99

13 USB Circuitry ... 100

5
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

13.1 Introduction ... 100

13.2 USB Pins .. 100

13.3 USB Modes and their Configuration on the OSD335x 102

13.3.1 USB Host Mode ... 102

13.3.2 USB Peripheral (Client) Mode .. 102

13.3.3 USB OTG Mode ... 102

13.4 USB Schematics ... 103

13.5 USB Layout .. 107

13.6 USB Testing .. 110

14 Adding Non-Volatile Storage ... 111

14.1 Introduction ... 111

14.2 MMC/SD Circuitry ... 111

14.2.1 SD Card .. 112

14.2.2 eMMC .. 114

14.3 EEPROM Circuitry ... 118

15 Bringing Up a Custom Bare-Bones Linux PCB .. 120

15.1 Introduction ... 120

15.2 Finalizing the Lesson 2 Design .. 120

15.2.1 Adding LEDs .. 120

15.2.2 Finalizing the silkscreen .. 124

15.2.3 Expected outcome ... 124

15.3 PCB Manufacturing ... 128

15.4 Bringing up the PCB .. 129

15.5 Booting Linux .. 129

15.6 Demo Application ... 129

16 Linux Boot Process .. 131

16.1 Introduction ... 131

16.2 OSD335x Debian Linux Boot Process ... 131

16.2.1 Stage 1: ROM Bootloader ... 132

16.2.2 Stage 2: Secondary Program Loader (SPL) 133

16.2.3 Stage 3: U-Boot Bootloader .. 133

6

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

16.2.4 Stage 4: Linux Kernel ... 134

16.2.5 Boot Process Memory Usage .. 135

17 Linux Device Tree ... 137

17.1 Introduction ... 137

17.2 Device Tree Structure and Properties ... 138

17.3 Modifying an Existing Device Tree ... 141

17.4 Pin Multiplexing ... 146

18 Linux Device Tree Overlay ... 148

18.1 Introduction ... 148

18.2 Understanding Device Tree Overlays .. 148

18.3 Generic Device Tree Overlay for the Peripheral Header 152

18.4 Adapting the Generic Device Tree Overlay for a Specific Click Board 154

18.5 Building and using a Device Tree Overlay....................................... 157

18.6 Checking if the Device Tree Overlay works as intended 160

7
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Revision History

Revision Number Revision Date Changes Author
1 8/6/2017 Initial Release Eshtaartha Basu

2 1/2/2018 LED series resistors (R10, R32 and
R33) updated from 4.7k to 1k, Open -
drain buffer TRM reference added to

Reset Article

Eshtaartha Basu

3 6/11/2018 Added Lesson 2 Tutorial sections Eshtaartha Basu

4 7/7/2018 Updated device tree figure 118 Ch 17 Eshtaartha Basu

8

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

1 Before You Begin

1.1 Fundamentals of the OSD335x
There are many parts within the OSD335x family. We will be focusing on the OSD3358-

512M-BAS in this series. Therefore, all references to the OSD335x hereafter imply

OSD3358-512M-BAS.

Figure 2 OSD335x BGA package

The OSD335x comes in a 27mm x 27mm Ball Grid Array (BGA) package with 400 balls

and 1.27mm ball pitch as shown in Figure 2.

Figure 3 OSD335x Functional Diagram

It consists of four main components as shown in Figure 3. They are:

o Sitara® AM335x ARM® Cortex® A8 processor from TI - is the heart of the

OSD335x.

o TPS65217 Power Management IC (PMIC) from TI - manages power distribution to

various parts of the OSD335x and provides power to external devices.

9
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o TL5209 Low Drop Out (LDO) regulator from TI - provides dedicated 3.3V rail to

power external components of the OSD335x.

o Up to 1GB of DDR3 - is the main memory of the OSD335x.

All of the peripheral interfaces of the AM335x (except the DDR interface) are brought

out to pins on the OSD335x. See the OSD335x datasheet for more information on the

pinout.

1.2 Lesson organization

Each lesson will consist of an Introduction section which describes the objective of

the lesson followed by a series of articles, each of which will walk you through the

design methodology. The lesson will conclude with an Expected outcome section

which describes how the outcome of that lesson will look.

Furthermore, each lesson may have several Perks and Caveats. The Perks will give

additional information about the topic in discussion and the Caveats will warn you

about conditions or situations which require more attention. The Perks and Caveats

look like this:

Before starting lesson 1, we strongly encourage you to go through the OSD335x

datasheet which can be found here.

https://octavosystems.com/docs/osd335x-datasheet/
https://octavosystems.com/docs/osd335x-datasheet/

10

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

1.3 Pre-requisites

We will be using Autodesk Eagle for schematics and layout. Hence, we assume that

you are familiar with Eagle schematics and layout. If not, please learn about them

first. The following website is one of the many websites that can help you:

To learn more about schematics: https://learn.sparkfun.com/tutorials/using-eagle-

schematic

To learn more about layout: https://learn.sparkfun.com/tutorials/using-eagle-

board-layout

https://learn.sparkfun.com/tutorials/using-eagle-schematic
https://learn.sparkfun.com/tutorials/using-eagle-schematic
https://learn.sparkfun.com/tutorials/using-eagle-board-layout
https://learn.sparkfun.com/tutorials/using-eagle-board-layout

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

2 Introduction to Bare Minimum Circuitry to Boot OSD335x

2.1 Introduction
The objective of this lesson is to help you become familiar with the bare minimum

setup required to boot the OSD335x and getting it ready to execute software. This

lesson will consist of a series of articles which will walk you through every step of the

design process. We start from specifications and guide you through every step till

debugging the manufactured Printed Circuit Board (PCB). The lesson will conclude

with a PCB that verifies the design by putting together everything that was taught.

 Figure 4 OSD335x Lesson 1 Block Diagram

To boot the OSD335x in its minimal configuration, we will need:

o Power circuitry

o Clock circuitry

o Reset circuitry

o Debugging/Programming interface (JTAG interface)

To make our design more functional, we will add a couple of buttons, LEDs and a

peripheral header to allow us to better test our completed design.

12

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

A block diagram of this setup is shown in Figure 4. We will discuss each of these

concerns in separate articles to have a better depth of understanding of each topic.

2.2 CAD Environment Setup

Before proceeding with the articles, let’s understand the Autodesk Eagle design

environment we will be using.

For this design, we are going to create a PCB with the following parameters:

o Board Size: 2500mil x 2000mil (2.5inch x 2inch)

o Number of layers: 4 layers.

o Trace width: 6mil (approx. 0.15mm). Since power traces generally carry more

current, we will be using larger traces (at least 15mil or 0.4mm) for them.

o Trace spacing: 6mil.

o Minimum drill and via size: 12mil (approx. 0.30mm) drill and 24mil (approx.

0.60mm) finished via diameter (i.e., 6 mil annular ring).

Using these standard rules will help us reduce manufacturing cost. For your design,

you are free to select the appropriate rules for your manufacturer and components

that suit your design.

All design files for this lesson can be downloaded here.

2.2.1 Library Setup

Octavo Systems provides an Eagle library, OSD3358_BAS_RefDesignParts.lbr, that

contains the schematic symbol and footprint for the device. This reference library can

be downloaded here.

o It is good practice to create your own Eagle Library for each design and copy all

parts used in the design into it. For this design, we have created the library

OSD3358_BAS_RefDesignParts.lbr.

o Setup the Eagle library path to the location of the Octavo Systems library file

and copy the device OSD3358-512M-BAS into your new library.

2.2.2 Schematic setup

o Open a new schematic file and name it appropriately.

o Make sure to use the OSD3358_BAS_RefDesignParts.lbr library in the

schematics.

o From the library, add the OSD3358-512M-BAS symbols to the schematic as

shown in Figure 5. The OSD3358-512M-BAS symbol will easily fit into A3 size

sheets. In the design files, all four A3 sheets are consolidated into a single

https://octavosystems.com/files/osd335x-ref-design-lesson-1-design-files/
https://octavosystems.com/files/osd335x-ref-design-lesson-1-eagle-library/

13
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Eagle sheet so that we can use the free version of the tool while still allowing

the schematics to be easily viewable while printing.

Figure 5 OSD335x symbol arrangement on schematic

2.2.3 Layout (Board) Setup:

o The layer stack up is shown in Figure 6. We’ll be using Top and Bottom layers

for signal routing. Route2 layer acts as power plane (We will be connecting it

to an appropriate power output pin of the OSD335x later). Route15 layer acts

as ground plane.

14

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

 Figure 6 Layout Layer stack up

o Draw the outline of the board and place the OSD3358-512M-BAS footprint as

shown in Figure 7.

Figure 7 OSD335x Layout

15
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

2.3 OSD3358-512M-BAS pin distribution

Figure 8 OSD335x BGA pin arrangement

Figure 8 gives visual representation of the OSD335x BGA pin arrangement. This will

help us plan the placement of the SiP on our board.

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

3 OSD335x Power Inputs and Outputs

3.1 Introduction
When it comes to booting a device, power circuitry is the first thing that comes to

mind. To have stable and predictable operation from any electronic device, we need

to make sure the power circuitry is well designed and is able to meet the power

requirements of the device under normal as well as extreme operating conditions.

The Power Circuitry is a complex topic, so we have split the discussion into five parts.

They are:

• Power Inputs and Outputs: This article will focus on input and output power

considerations for the OSD335x.

• Ground Connections: This article will focus on ground connections and

important layout pour considerations for the OSD335x.

• Power Management: This article will focus on topics related to control and

management of power for the OSD335x.

• Clamping Circuit: This article will focus on clamping circuit which can be used

to prevent certain power down issues that may arise with the OSD335x.

• ESD Protection: This article will focus on steps needed to provide Electro

Static Discharge (ESD) protection to the OSD335x based Printed Circuit Boards

(PCB).

This article is the first part of the OSD335x Reference Design Lesson 1 Power circuitry

articles. We recommend you to read other parts of power circuitry article as well

which are available further ahead in this article. As we discuss the power circuitry,

we will build the schematic and layout the corresponding traces. All the components

used in this article can be found in the provided library. The components will be

introduced after relevant discussion as we proceed with the article.

3.2 Power Input

The OSD335x can be powered from 5V DC power supply (generally sourced from an AC

adapter), from a standard USB port (5V) or using a standard single cell (1S) Li-Ion/Li-

Polymer (LiPo) battery.

3.2.1 VIN_AC

While this port is called VIN_AC, it is a DC power input generally powered from a 5V

AC adapter. By default, this input has 2A current limit and can be used as primary

power input. For our design, we will use a DC barrel connector to source this input

since DC barrel connectors are used by many other electronic devices and adapters

https://octavosystems.com/files/osd335x-ref-design-lesson-1-eagle-library/

17
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

compatible with this type of connector are easily available. The DC barrel connector

device we’re using can be found under the name PJ-102B_POWER_CON in the

provided library. Let’s connect this pin directly to the input pins Y5 and Y6 of the

OSD335x.

3.2.2 VIN_USB

This input of the OSD335x can be powered from the VBUS line of the USB client

connector at 5V. By default, the input current limit of this pin is 500mA which is also

the standard output current limit for a USB 2.0 host port. However, through software

configuration of the power management IC (PMIC) inside the OSD335x, the current

limit can be raised to 1.3A.

The USB client connector used in this design can be found under the name 10118192-

0001LF in the provided library. The VBUS pin of this connector should be connected

to the pins Y8 and Y9 on the OSD335x.

3.2.3 VIN_BAT

VIN_BAT pin can act as either a battery input or output. It acts as a battery input

when the OSD335x is running on battery power. It acts as a battery output when the

OSD335x is charging the connected battery (more information on charging given in the

below perk). This input should be powered by a single cell (1S) Li-Ion or Li-polymer

battery with voltage range of 2.75V to 5.5V.

In this lesson, we will primarily use VIN_AC and VIN_USB to source power to the

OSD335x. How-ever, in the future we may want to use a (1S) Li-ion or Li-Polymer

battery to power our design. Hence, we will add thru-hole test points for battery

Caveat:

While it is ok for us to connect the DC barrel connector directly to the OSD335x for

this minimal design, you should add appropriate power input protection, such a

ferrite beads, diodes and fuses, based on the needs of your application.

Caveat:

Depending on your application, 500mA input current may not be sufficient. If you

plan to increase the input current limit of this input through software, make sure

the USB host can source the required additional current. For example, USB 3.0 host

port can supply up to 0.9A output current at 5V.

18

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

power inputs so that we can connect a battery later if necessary. Thru-hole test

points can be found under the name TESTPAD/W_HOLE_1X1 in the provided library.

3.3 Input Power Schematics

Based on the description above, let’s update our schematics with all the input power

connections as shown in Figure 9 (Updates made to the schematics are shown using

dotted lines).

Caveat:

The OSD335x does not use VIN_BAT as an input event to power up the device from

OFF state or SLEEP state. More information about this can be found under section

9.3.1.1 in the TPS65217 datasheet.

Perk:

The OSD335x is also capable of charging Li-ion and Li-Po batteries using its built in

linear charger. It has dedicated pins to monitor battery voltage (BAT_VOLT) and

monitor battery temperature (BAT_TEMP). The VIN_BAT pin provides battery

output while charging. Battery charging is managed by the TPS65217 PMIC present

inside the OSD335x. More information about battery charging can be found in the

TPS65217x Datasheet.

http://www.ti.com/lit/ds/symlink/tps65217.pdf
http://www.ti.com/lit/gpn/tps65217

19
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 9 Power input connections

It is a good idea to add test points to all the input power rails so that we can easily

test the voltages during debug. For this design, we have used thru-hole test points for

all the input power rails. But, for your design, feel free to use surface test pads to

save board area.

Supply pins are also added to input power rails so that we can see where these

voltages are used elsewhere on the schematic.

The reason behind the presence of resistor R1 is explained under the ESD (Electro

Static Discharge) protection chapter (chapter 6) of this document.

3.4 Input Power Layout

Now that we have completed the schematics for power input, let’s begin the layout. As

per the guidelines in the introduction article, we will use 6mil (approx. 0.15mm)

traces for signals and at least 15mil (approx. 0.40mm) traces for power traces and

connect them to the OSD335x power pins using pours so that there is good connection

to the BGA balls. While we could use pours for the entire power connection, in this

design we do not have any peripherals with high current draw so we can use traces to

make layout easier. The layout is shown in Figure 10.

20

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 10 Power input layout

The components are placed and routed in a specific manner to accommodate future

components and to facilitate easy routing as we go ahead with the articles.

3.5 Power output

The PMIC and LDO inside the OSD335x generate many different power outputs. Some

of the outputs are only for internal use within the System in Package (SiP). However,

others provide power that can be used by the systems external to the SiP. Please go

through the power app note before budgeting power for your design. The maximum

power output of each of these pins can be found in the OSD335x datasheet. The

following power outputs can be used for external devices:

o SYS_VOUT: Shared supply sourced by the PMIC. This rail also supplies power to the

AM335x, DDR3 and TL5209 LDO inside the SiP. This output is not regulated. It merely

reflects the voltage of the input power source that is being used to power the PMIC.

Therefore, when using a battery, it is necessary to make sure that any components

that use the SYS_VOUT power output can operate on a voltage between 3V and 5V

since the PMIC will switch to a different power input when charging the battery.

o SYS_VDD1_3P3V: Dedicated 3.3V supply rail for external circuitry. Powered by the

TL5209 LDO and enabled by LDO4 of the PMIC. This power output will be connected

to the power plane of our layout.

https://octavosystems.com/app_notes/osd335x-power-application-note/
http://octavosystems.com/octavosystems.com/wp-content/uploads/2015/09/OSD335x-Datasheet.pdf

21
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o SYS_VDD2_3P3V: Dedicated 3.3V supply for external circuitry directly supplied by

LDO2 of the PMIC.

o SYS_RTC_1P8V: 1.8V output powered by LDO1 of the PMIC. It is also used internally

to power the RTC of the AM335x.

o SYS_VDD_1P8V: 1.8V output powered by LDO3 of the PMIC.

o SYS_ADC_1P8V: 1.8V output powered by LDO3 of the PMIC and filtered for analog

applications. It supplies power to the AM335x ADC. It can also be used to power

external analog circuitry.

It is a good idea to add supply pins and test points to all the power output pins as

shown in Figure 11 so that we can probe the voltages during debug and board bring-

up.

3.6 Test points on internal power rails

The OSD335x provides external access to critical internal power rails. These pins

should be used for testing/monitoring purposes only. They shouldn’t be used to

power external circuitry. Test points need to be added to these power rails so that

internal voltages can be looked up in case of power-up issues. You can use either

thru-hole test points or test pads, whichever makes your routing easier. For this

design, we will be using thru-hole test points.

The OSD335x pins that provide access to internal power rails are VDDSHV_3P3V,

VDDS_DDR, VDD_MPU, VDD_CORE and VDDS_PLL.

Perk:

If you’re curious about how the internal power rails are used within the SiP,

you can find more information below:

o VDDSHV_3P3V: Dedicated 3.3VDC to power the AM335x I/O. It is supplied by

the TPS65217 LDO4.

o VDDS_DDR: Dedicated 1.5VDC supply to power the AM335x DDR3 interface and

DDR3 device.

o VDD_MPU: Dedicated 1.1VDC supply to power the AM335x MPU domain.

o VDD_CORE: Dedicated 1.1VDC supply to power the AM335x CORE domain.

o VDDS_PLL: Filtered 1.8VDC to supply power to the AM335x PLLs and oscillators.

You can also refer Texas Instruments (TI) Power Hookup Application Note for in depth

information.

http://www.ti.com/lit/ug/slvu551i/slvu551i.pdf

22

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

3.7 Schematics for power output pins and test points on internal power rails

Figure 11 OSD335x schematic for test points on internal power rails and power output pins

Let’s add test points and supply pins suitably as shown in Figure 11 (Updates made to

the schematics are shown using dotted lines). Thru-hole test points can be found

under the device name TESTPAD/W_HOLE_1X1 in the provided library.

3.8 Layout for test points on internal power rails

Figure 12 OSD335x layout for power output pins and test points on internal power rails

23
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

The test points were placed and routed to accommodate future components and

facilitate easy routing as shown in Figure 12.

3.9 Analog reference input and ground

Figure 13 Schematic for Analog Reference input and Ground

The OSD335x has an Analog-to-Digital Converter (ADC) interface that can be used for

things like monitoring voltages and interfacing with analog sensors. To use the ADCs,

the Analog Power and Ground must be connected appropriately. The interface can

tolerate inputs up to 1.8V depending on the analog voltage reference VREFP.

Internally, the OSD335x connects the VREFN pin of the AM335x to analog ground, so

the range of ADC is analog ground to VREFP. Generally, VREFP is connected to

SYS_ADC_1P8V but it can be set to a lower voltage using a voltage divider.

Since the voltage reference, VREFP, needs to be a clean as possible, we want to put a

resistor footprint between VREFP and the power connection. This gives the option of

putting a resistor or ferrite bead in at a latter place if we need to suppress noise.

Also, we want to put bypass capacitors between VREFP and analog ground to help

suppress noise. These connections can be seen in Figure 13 (Updates made to the

schematics are shown using dotted lines).

If you do not need to use the ADC interface in your application, then VREFP should be

shorted with AGND.

Layout for Analog Connections can be made as shown in Figure 14.

24

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 14 Layout for Analog Connections

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

4 OSD335x Ground Connections

4.1 Introduction
This article is the second part of the OSD335x Reference Design Lesson1 Power

circuitry articles. It will focus on ground connections and pours required for reliable

performance from the OSD335x. As we discuss the power circuitry, we will build the

schematic and layout the corresponding traces.

4.2 Ground Connections

Figure 15 OSD335x Ground connections

The OSD335x has several ground pins. All the pins on the SIP E symbol should be

grounded, as shown above in Figure 15, even though they are connected together

within the SiP. This is to make sure all components within the OSD335x are uniformly

grounded and ensure the shortest return current paths for all the components inside

the OSD335x. For our reference design, a thru-hole test point was added to help us

measure voltage during bring-up.

It is good to have test points to ground on the design for testing during bring-up, but

it is not necessary as long as there is access to ground somewhere in the design. In

compact designs, you can use surface test points to save space.

4.3 Ground pour layout discussion:

When grounding the OSD335x, you are free to use one via for each ground pin.

However, vias occupy a lot of routable space and a lot of vias can cause routing

problems (this does not necessarily apply to blind and buried vias since they occupy

much less route-able board area). Routable space can be saved by instead using

ground pours and minimizing the number of ground vias. For this design, since the

ground pins are clustered in two areas, we have placed two copper pours on the top

layer for ground. Then we have at least one via per two ground pins so there is a good

connection to the ground plane. When using copper pours, the following things should

be considered:

26

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o Have at least one via for every two to four ground pins.

o Vias should be placed wisely keeping current return path also in mind.

o Care should be taken not to flood the entire area below the BGA of the

OSD335x with a ground pour. If the area of the ground pour is large, it may sink

too much heat from the BGA and may result in bad solder joints during reflow.

Similarly, make sure thermals are used for the pours to prevent the pours from

sinking too much heat and causing bad solder joints.

Perk:

A ground pour is nothing but a copper pour connected to GND or GND plane of the

PCB. More information about copper pours can be found here.

https://en.wikipedia.org/wiki/Copper_pour

27
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 16 OSD335x Ground Pour

As shown in Figure 16, we have used two ground pours for this design to minimize the

size of each pour. Each pour uses thermals (thermal relief) and there are plenty of

vias to ensure good connection to ground.

Perk:

A thermal (thermal relief) in PCB jargon refers to a particular way in which a pad

is connected to a pour/plane to make good electrical connection but poor thermal

connection. Copper is a good conductor of heat. Hence, if good thermal

connection were to be made, the plane/pour would draw all the heat away from

the pad leading to a bad solder joint. More information about thermals and their

uses can be found here.

https://electronics.stackexchange.com/questions/38392/what-are-thermals

28

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

4.4 Power and Ground Planes

As we already stated, our design uses a 4 layer PCB. The top and the bottom layers

are used for signal routing whereas the layer beneath the top layer is used as a power

plane and the layer below the power plane is used as a ground plane. Use of power

and ground planes that are closely spaced to each other reduces crosstalk and

interference between the top and bottom signal layers.

Most of the components in this design will operate on 3.3V. Hence, we will be

connecting SYS_VDD_3P3V to the power plane. The power plane will help those

components directly receive power through a via with minimal resistance since the

power plane is spread across the board.

The ground plane is used to connect all components to a common ground reference. It

will:

o provide a low resistance return path for currents to reduce noise.

o will prevent current loops.

o will act as EMI shield protecting the PCB from external noise and prevent

radiation of high frequency noise from the PCB.

o provide uniform impedance plane for traces carrying high frequency signals

with high fidelity against reflections.

Power and Ground planes can be created in the layout by drawing one complete

polygon along the edge of the board in layer 2 and connecting it to SYS_VDD_3P3V and

drawing the other complete polygon in Layer 15 and connecting it to GND using the

NAME tool of Eagle. The POWER and GND polygons are shown in Figure 17. When the

RATSNEST button is pressed on the layout, the power and ground planes occupy the

entire area of the board as shown in Figure 18 and Figure 19.

29
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 17 Power and Ground plane polygons

Figure 18 Power Plane

30

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 19 Ground Plane

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

5 OSD335x Power Management

5.1 Introduction
This article is the third part of the OSD335x Reference Design Lesson1 Power circuitry

articles. It will mainly focus on topics related to control and management of power

for the OSD335x. As we discuss the power circuitry, we will build the schematics and

layout the corresponding traces.

5.2 I2C interface

Figure 20 OSD335x I2C connections

For most designs, the AM335x processor communicates with the TPS65217C PMIC

through the I2C0 interface. The I2C lines for both the processor and the PMIC are

brought out to the BGA balls of the OSD335x to give flexibility in how things are

connected. Almost always, the I2C0 pins of the AM335x and the I2C pins of the

TPS65217C PMIC are connected externally to enable I2C communication between the

processor and PMIC. The I2C pins that need to be connected are placed close to each

other on the OSD335x schematic symbol to facilitate easy connection. The necessary

connections are shown in Figure 20 block diagram.

The I2C0 pins of the AM335x processor have internal 4.7K ohm pullup resistors. This is

sufficient if nothing else is connected to the I2C0 bus. In the case that other

components are connected to the I2C0 bus, it is good practice to put additional

external pull-up resistors. This allows the strength of the pull-ups on the I2C0 bus to

be set based on the other bus components. For this design, given we are connecting

32

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

to some unknown components, we are going to use 1.5k ohm external pull-ups whose

value can be adjusted later if necessary.

Most of the functionality of the TPS65217C PMIC can be controlled and various

parameters can be set using the I2C interface. Some of the features that can be

controlled are:

o Battery charger voltage.

o Charge safety timer control.

o Buck and Boost converter output voltage.

o LDO output voltage.

o Power up and power down sequences.

o Over current and over temperature thresholds.

Details about the I2C interface and its usage can be found in the TPS65217x

datasheet.

Figure 21 Schematic for OSD335x I2C connections

Let’s make I2C connections on the schematic as shown in Figure 21 (Updates made

to the schematics are shown using dotted lines).

http://www.ti.com/lit/gpn/tps65217
http://www.ti.com/lit/gpn/tps65217

33
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 22 Layout for I2C connections

The highlighted routes in Figure 22 represent the I2C connections in the layout.

5.3 PMIC control and status

Figure 23 External connections required between AM335x processor and TPS65217C PMIC

Besides the I2C connections, there are a few more signals that must be connected

between the processor and PMIC for the OSD335x to function correctly. Figure 23

34

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

shows the external signal connections that we must make to allow the AM335x and

the TPS65217C PMIC to coordinate their operations. These signals were brought out of

the OSD335x so that the user can have more control over power sequencing if

necessary. The description of these signals are:

o PMIC_POWER_EN: This pin is used by the AM335x to control the power

up sequence of the PMIC.

o PMIC_IN_PWR_EN: Enable input for buck converters and LDOs on the

PMIC. Pulling this pin high will start the power up sequence.

o RTC_PWRONRSTN: Independent Power On Reset Pin of the AM335x RTC.

o PMIC_OUT_LDO_PGOOD: LDO power good output. This pin goes high

when both LDO1 and LDO2 output voltages are within regulation and

goes low when either one of them are out of regulation.

o EXT_WAKEUP: Dedicated input pin of the AM335x for external wake up

events.

o PMIC_OUT_NWAKEUP: Signal to host to indicate a power on event

(active low)

o EXTINTN: External interrupt input of the AM335x.

o PMIC_OUT_NINT: Interrupt output (active low) of the PMIC.

For this design, we do not need any additional control of the power

sequencing, so we can directly connect the pins. However, let’s add test

points so that we can probe these signals during bring-up. Let’s make the

necessary connections on the schematic as shown in Figure 24 (Updates made

to the schematics are shown using dotted lines).

35
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 24 Schematic for OSD335x Control and Status connections

Figure 25 PMIC control and status connections

The highlighted routes in Figure 25 represent the PMIC control and status

connections in the layout.

5.4 Power button

The TPS65217C PMIC inside the OSD335x has an active low reset input which is

brought out through the PMIC_IN_PB_IN pin of the OSD335x and can be connected to a

push button. This input has a 50ms deglitch time and an internal pull-up resistor to an

always-on supply. The power button has the following functions:

o The PMIC is powered up from OFF or SLEEP mode upon detecting a falling

edge on PMIC_IN_PB_IN.

o PMIC is power cycled/reset when PMIC_IN_PB_IN is held low for more than 8

s. All rails will be shut down by the sequencer and all register values are

reset to their default values. Rails not controlled by the sequencer are shut

down immediately. The device remains in this state for as long as this pin is

36

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

held low. However, the device will remain in RESET state for a minimum of

1 second before it returns to ACTIVE state.

o If the PMIC_IN_PB_IN pin is kept low for an extended amount of time, the

device will continue to cycle between ACTIVE and RESET state, entering

RESET every 8 seconds.

Figure 26 OSD335x Power Button

Perk:

You can find more information about power button and PMIC modes at:

http://www.ti.com/product/TPS65217/datasheet/detailed-

description#SLVSB641234

http://www.ti.com/product/TPS65217/datasheet/detailed-

description#SLVSB643180

http://www.ti.com/product/TPS65217/datasheet/detailed-description#SLVSB641234
http://www.ti.com/product/TPS65217/datasheet/detailed-description#SLVSB641234
http://www.ti.com/product/TPS65217/datasheet/detailed-description#SLVSB643180
http://www.ti.com/product/TPS65217/datasheet/detailed-description#SLVSB643180

37
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

The schematic is developed as shown in Figure 26 (Updates made to the schematics are

shown using dotted lines). The power button we’re using can be found under the device

name KMR231GLFS in the given library.

Figure 27 Power button layout

The highlighted routes in Figure 27 represent the power button connections in the

layout.

Caveat:

Long-pressing the power button on some boards will power off the system instead
of power cycling it. This state occurs when the TPS65217C PMIC shuts off SYS_5V at
the start of the power down sequence. If the SYS_5V rail powers down before the
regulated supplies, which it powers, it can result in a PMIC fault. This causes the
system to go to the OFF-state instead of going through the normal power-cycle
sequence.

38

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

5.5 Power indicator LED

For this design, we want to have an LED to indicate that power is on. Since

SYS_VDD2_3P3V can only supply 150mA externally, we used this power output to

indicate power is on as shown in Figure 28 (Updates made to the schematics are

shown using dotted lines).

Figure 28 Schematic for OSD335x Power LED

39
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 29 Power LED layout

The highlighted routes in Figure 29 represent the power LED connections in the

layout.

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

6 OSD335x Clamping Circuit

6.1 Introduction
This article is the fourth part of the OSD335x Reference Design Lesson1 Power

circuitry discussion. It will focus on a clamping circuit which may be needed by your

application. A clamping circuit is a type of circuit that maintains the voltage level of

an input with respect to another input. As we discuss the clamping circuit, we will

build the schematic and layout the corresponding traces.

6.2 AM335x Power-Down Requirements
The AM335x datasheet requires that the voltage difference between the power rails

VDDS (1.8V) and VDDSHVx [1-6] (3.3V) of the AM335x processor be less than 2V during

the entire power-down sequence (More information about this can be found under Use

of a Clamping Circuit for Simultaneous Ramp Down section of this user guide). The

VDDS power input of the AM335x processor is connected within the OSD335x to the

SYS_RTC_1P8V power rail and the VDDSHVx [1-6] power inputs are connected within

the OSD335x to the VDDSHV_3P3V power rail. The voltage difference between these

two power rails could exceed 2V if VDDSHV_3P3V rail remains high, possibly because

of large output capacitance or no load being present on the output, while the

SYS_RTC_1P8V rail ramps down quickly, as if it were fully loaded.

If you cannot guarantee that the voltage difference between the two voltage rails

(SYS_RTC_1P8V and VDDSHV_3P3V) of the OSD335x will be less than 2V during the

entire power down sequence in your design, then you will need a clamping circuit.

http://www.ti.com/lit/slvu731

41
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

6.3 Clamping circuit

Figure 30 Clamping circuit

The clamping circuit (shown in Figure 30) will make sure that the voltage difference

between the given two voltage rails (VDDSHV_3P3V and SYS_RTC_1P8V) is less than

2V. Its operation will be discussed in three phases.

You need to keep the following assumptions in mind before analyzing the operation of

clamping circuit:

o It is assumed that, once the power down sequence of the AM335x begins, the

voltage rail VDDSHV_3P3V remains high due to a large output capacitance or no

load and the voltage rail SYS_RTC_1P8V ramps down relatively quickly due to a

full load.

o It is also assumed that, the voltage rail, VDDSHV_3P3V, will be able to source

enough current to pull up the voltage of SYS_RTC_1P8V rail whenever

necessary.

We recommend you to read the datasheets of the shunt regulator TLVH431 and

2N2907A transistor before trying to understand the operation of clamping circuit.

Few quick tips about TLVH431 and 2N2907A essential to understand the operation of

clamping circuit:

o The shunt regulator, TLVH431, will be OFF (acts as open switch) whenever the

voltage at its reference input connected to node A (in Figure 30) is less than

1.24V. It will turn ON (act as closed switch) whenever voltage at its reference

input (node A) is greater than 1.24V.

o The PNP transistor, 2N2907A, will allow current to flow from its emitter

terminal to the collector terminal when the voltage difference between its

http://www.ti.com/lit/gpn/tlvh431
http://www.onsemi.com/pub/Collateral/P2N2907A-D.PDF

42

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

base terminal and emitter terminal is greater than or equal to 0.4V. In other

words, it acts like a closed switch when the voltage difference between node B

and the VDDSHV_3P3V rail is greater than 0.4V and acts like an open switch

when the voltage difference between node B

and the VDDSHV_3P3V rail is less than 0.4V.

For the circuit analysis below, we will assume that TLVH431 will be in the OFF state

whenever the reference input of the TLVH431 is at 1.24V.

6.3.1 Phase 1 – AM335x in normal operation / just before power down (Clamping

circuit in standby):

Figure 31 Clamping circuit (Phase 1)

The clamping circuit will operate in this phase when both the voltage rails are at

nominal voltages (i.e., VDDSHV_3P3V is at 3.3V and SYS_RTC_1P8V is at 1.8V) as

shown in Figure 31.

The voltage divider circuit consisting of resistors R40 and R41 provides the reference

voltage for U8 (TLVH431) at node A. In this phase of operation, node A will be at 3V

relative to ground. But, node A will be at 1.2V (3V – 1.8V) with respect to

SYS_RTC_1P8V voltage rail. As a result, U8 will turn OFF (will not sink current from

node B) and voltage at node B will remain at 3.3V. Hence, Q1 (2N2907A) will turn

OFF.

43
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

6.3.2 Phase 2 – AM335x power down sequence begins (Clamping circuit actively

maintaining the voltage difference between the two power rails):

The clamping circuit will operate in this phase when the voltage difference between

its two power rails, VDDSHV_3P3V and SYS_RTC_1P8V, is greater than or equal to

1.55V. Let’s discuss the two possible cases:

6.3.2.1 Case 1: Voltage difference between VDDSHV_3P3V and SYS_RTC_1P8V is equal to

1.55V

Figure 32 Clamping circuit (Phase 2, Case 1)

Let’s understand case 1 through an example. For this example, let’s assume

VDDSHV_3P3V is at 3.3V and SYS_RTC_1P8V is at 1.75V as shown in Figure 32 (Fixing

the voltage will help us understand the circuit better). Now, the voltage difference

between the two power rails is 1.55V (3.3V – 1.75V = 1.55V).

When SYS_RTC_1P8V is at 1.75V, the voltage at node A will be 2.99V (i.e., 2.99V-

1.75V = 1.24V with respect to SYS_RTC_1P8V rail). As a result, U8 (TLVH431) turns

OFF and will not sink current from node B. Therefore, node B will be at 3.29V and the

voltage difference between the base and emitter of transistor Q1 will be less than

0.4V. Hence, Q1 will turn OFF. This is similar to Phase 1 where both U8 and Q1 are

off.

44

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

6.3.2.2 Case 2: Voltage difference between VDDSHV_3P3V and SYS_RTC_1P8V is greater than

1.55V

Figure 33 Clamping circuit (Phase 2, Case 2)

Now, let’s understand the behavior of clamping circuit when the voltage difference

between its two power rails is greater than 1.55V. Let’s assume VDDSHV_3P3V is at

3.3V and SYS_RTC_1P8V is at 1.74V as shown in Figure 33 (Fixing the voltage will help

us understand the circuit better). Hence, the voltage difference between the two

power rails becomes 1.56V (3.3V – 1.74V = 1.56V).

When SYS_RTC_1P8V is at 1.74V, the voltage at node A will be 2.99V (i.e., 2.99V-

1.74V = 1.25V with respect to SYS_RTC_1P8V rail). As a result, U8 (TLVH431) turns ON

and sinks current from node B. This will lower the voltage at node B to 1.74V and the

voltage difference between the base and emitter of Q1 will exceed 0.4V. Hence, Q1

will turn ON and current begins to flow from VDDSHV_3P3V rail to SYS_RTC_1P8V rail.

This will increase the voltage of SYS_RTC_1P8V rail to 1.75V. The voltage at node A

with respect to ground will now become 1.24V (2.99V – 1.75V = 1.24V) and U8 will

turn OFF. So, Q1 will turn OFF and current flow from VDDSHV_3P3V to SYS_RTC_1P8V

will cease.

This cycle continues until one or both of the voltage rails drop down to 0V at the end

of the power down sequence. Now, this is an idealized analysis so in the real

45
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

operation there will be some overshoot and undershoot but based on the voltage

ripple should be less than ±5%.

6.3.3 Phase 3 - End of AM335x power down sequence (Clamping circuit back to

standby):

Figure 34 Clamping circuit (Phase 3)

The clamping circuit will operate in this phase when the AM335x is almost at the end

of its power down sequence and after SYS_RTC_1P8V drops down to 0V while

VDDSHV_3P3V is still at 1.55V as shown in Figure 34.

When SYS_RTC_1P8V is at 0V, the voltage at node A will be 1.24V. As a result, U8

(TLVH431) turns OFF and will not sink current from node B. This will lower the voltage

at node B and the voltage difference between the base and emitter of Q1 will be less

than 0.4V. Hence, Q1 will turn OFF. This is similar to Phase 1 where both U8 and Q1

are off.

The operation of clamping circuit and its three phases can be better understood with

the help of a voltage vs time graph as shown in Figure 35.

Phase 1: The clamping circuit will be in standby and Q1 is OFF.

Phase 2: Initially, the clamping circuit will turn ON when the voltage difference

between the given two power rails increases to 1.56V (shown at the beginning of

46

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Phase 2 in Figure 35). After this, the clamping circuit will actively maintain the

voltage difference between VDDSHV_3P3V and SYS_RTC_1P8V at approximately 1.55V.

Phase 3: The clamping circuit will go back to standby mode since SYS_RTC_1P8V will

drop down to 0V while VDDSHV_3P3V is at 1.55V and the difference between the two

voltage rails is 1.55V.

Figure 35 Clamping circuit voltage curves

Let’s build the schematic of the clamping circuit as shown in Figure 36.

Figure 36 Schematic for OSD335x Clamping Circuit

47
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Connections in layout are made as shown in Figure 37.

Figure 37 OSD335x Clamping Circuit layout with pour

For this design, we used copper pours as well as 15 mil traces so that there is good

electrical as well as thermal connections.

Since we only wanted to put components on a single side of the board for this design,

the power outputs were routed to the clamping circuit as shown in Figure 37.

However, if placing components on the back side of the board, clamping circuit can

go directly under the power connections.

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

7 OSD335x ESD Protection

7.1 Introduction
Electrostatic discharge (ESD) is the flow of a static electric charge from one object to

another when two charged objects come into contact. Familiar examples of ESD

include the shock we receive when we walk across a carpet and touch a metal door

knob and the static electricity we feel after drying clothes in a clothes dryer. This

flow of static charge involves build-up of a very high voltage (around 10KV) for a very

short duration of time. Generally, a Printed Circuit Board (PCB) receives an ESD strike

whenever a person (whose skin is statically charged) touches it. Most electronic

components (without internal ESD protection) get damaged since they cannot

withstand such high voltage. Hence, ESD protection for a PCB is essential to protect

all the components on it.

This article is the fifth part of the OSD335x Reference Design Lesson1 Power Circuitry

Discussion. It will focus on providing ESD protection to a PCB with the OSD335x and

other components on it. As we discuss the ESD protection circuitry, we will build the

schematics and layout the corresponding traces.

7.2 ESD protection

In order to protect the board from ESD strikes which can result from a person touching

the PCB, we have created a ground ring, CGND, that runs along the edge of the PCB

on both the top and bottom layers. The ground ring connects all of the mounting holes

(annotated in Figure 41) and shield pins (annotated in Figure 41) of metal connectors,

such as USB connectors. These components are most susceptible to ESD strikes. An

ESD strike has a very high voltage (around 10KV), but relatively little charge (low

energy). Therefore, we can use a couple of different methods to help dissipate the

energy from an ESD strike.

First, we can make use of the mounting holes as shown in Figure 38. Four mounting

holes are placed at the corners of the PCB for mechanical attachments to the board.

Generally, PCBs are bolted through the mounting holes to metal cases that are

externally grounded. As a result, when an ESD strike occurs, the charge safely flows

through the mounting holes to the bolts and finally to external ground.

Figure 38 Mounting holes connected to CGND

49
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Second, since a PCB may not be mounted and not have a path to external ground, we

can add circuitry to dissipate the energy through the ground (GND) plane. Therefore,

CGND is connected to the GND plane of the PCB through a 0.1 ohm resistor (R1) as

shown in Figure 39 (This picture is from OSD335x Power Inputs and Outputs article).

Figure 39 ESD energy dissipation

This will make sure any ESD strike can be safely dissipated into the GND plane. The

0.1 ohm resistor should have a higher wattage (0.125W or larger) to make sure there

are no thermal issues (damage to the resistor due to power flow that exceeds its

rating). Alternately, a 0.1uF capacitor and 100K Ohm resistor in parallel can be used

to connect CGND to the GND plane (In this design, we have opted for the single

resistor approach to dissipate energy since it is more economical).

The CGND polygon pour for ESD protection should form a complete ring along the

edge of the board and must be well connected to the shield pins of the connectors.

The CGND polygon pour must be present on both sides of the board. For this design,

we will use a pour of at least 50 mils as shown in Figure 40 and Figure 41.

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/power-input-ouput/

50

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 40 OSD335x mounting holes with CGND pour outline for ESD protection

Figure 41 OSD335x mounting holes with CGND pour for ESD protection

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

8 OSD335x Reset Circuitry

8.1 Introduction
This article will help you understand the OSD335x Reset Circuitry design methodology.

A Reset circuit/pin is typically used to help a microprocessor reinitialize itself and

resume its normal operation whenever it runs into condition which is undesirable for

the current activity and when all other recovery mechanisms fail. It is also used

during power-up to make sure the microprocessor and all its modules start their

operation from a known state.

8.2 Reset Types
Before we jump into the OSD335x specifics, let’s look at the type of reset inputs

typically provided by Texas Instruments (TI). TI generally provides two types of

resets: Cold Reset and Warm Reset. Let’s look at the properties of both these reset

types:

8.2.1 Cold reset

o It affects all the logic within the given entity (sub-system, module or macro-

cell).

o It is non blockable (This signal cannot be interrupted or blocked using software

or any other internal module. Once this signal is triggered, the device

immediately performs all the necessary operations irrespective of its state).

o A cold reset takes place during device power-up and power domain power-up.

o Cold reset is synonymous with Power-On-Reset.

8.2.2 Warm reset

o It is a partial reset which doesn’t affect all the logic within the given entity.

o It is used to reduce Reset recovery time (Time required to resume normal

operation after application of reset signal).

In general, a reset signal is asserted during device startup to make sure the device

begins operation from a known initial state each time it is powered up. This signal is

applied until the power supplies are stable and the device can begin normal

operation. A reset signal is also applied during device operation when the

microprocessor runs into an error condition which is undesirable for the current

activity and all other error recovery mechanisms fail.

The OSD335x provides three reset inputs PWRONRSTN, WARMRSTN and

RTC_PWRONRSTN which are directly connected to the AM335x processor reset inputs

of the same name. Let’s look at each of them in more detail:

52

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

8.2.2.1 PWRONRSTN

o It is a cold reset.

o It needs to be driven low during device power-up until all the input power

lines have ramped up and are stable.

o It is non blockable (PWRONRSTN signal cannot be interrupted or blocked

using software or any other internal module. Once this signal is triggered,

the device immediately performs all the necessary operations irrespective

of its state).

o Entire system is affected except RTC (Real Time Clock) module.

o SYSBOOT (boot configuration) pins are latched when reset is de-asserted.

8.2.2.2 WARMRSTN

o It is a warm reset.

o It can be blocked by EMAC (Ethernet Media Access Controller) switch.

o PLLs are not affected.

o Most debug logic subsystems are not affected. This allows us to maintain

debug session even after warm reset event.

o SYSBOOT pins are not latched with warm reset.

o Some PRCM (Power, Reset and Clock Management) and control module

registers are warm reset insensitive.

o Warm reset assumes power supply and clock is stable from assertion

through de-assertion.

8.2.2.3 RTC_PWRONRSTN

o Dedicated Power-On-Reset input for the RTC module.

o RTC module is not affected by device Power-On-Reset (PWRONRSTN).

Similarly, RTC_PWRONRSTN will not have any effect on the rest of the

device.

53
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

8.3 Reset external connections

Figure 42 TPS65217 PMIC Power-Up Sequence (PMIC_OUT_PGOOD/PGOOD behavior during power-up)

During power-up, voltages on the input power rails of the AM335x processor will be

ramping up as shown in Figure 42 (More information about Power-Up sequence of

various power rails can be found in Power-Up Sequencing section of the TPS65217x

datasheet). The PWRONRSTN pin should be driven low until all the power rails have

ramped up and are stable. The PMIC_OUT_PGOOD pin will be maintained low when

power rails are ramping up or when the power on any of the power rails is below the

required value. It will go high only when the power on all power rails are stable as

shown in Figure 42. Hence, the PWRONRSTN pin needs to be driven by the

PMIC_OUT_PGOOD pin. Both the PWRONRSTN and the PMIC_OUT_PGOOD signals are

brought out of the OSD335x and they need to be connected externally as shown in

Figure 43.

Figure 43 PWRONRSTN and PMIC_OUT_PGOOD connection

http://www.ti.com/lit/ds/symlink/tps65217.pdf
http://www.ti.com/lit/ds/symlink/tps65217.pdf

54

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

As described in the PORz Sequence section of the AM335x TRM, for the WARMRSTN

pin (nRESETIN_OUT) to maintain a valid low state until the supplies are ramped, it

should also be driven by PMIC_OUT_PGOOD. However, due to I/O voltage differences

(PMIC_OUT_PGOOD and PWRONRSTN pins operate at 1.8V while the WARMRSTN pin

operates at 3.3V) and the need for independent reset control, WARMRSTN should be

driven by PMIC_OUT_PGOOD thru an open-drain buffer (SN74LVC1G07). For more

information on the requirement of open-drain buffer, see section 8.1.7.3.2 PORz

Sequence (page 1236) of the AM335x TRM (Rev. P).

To manually reset the OSD335x in the case of a software or hardware error condition,

we will also add a push button as a reset source for WARMRSTN. Push buttons are

susceptible to ground bounce which may lead to multiple resets or partial resets. To

overcome this problem, a reset supervisor circuit can be used. The APX811 is an

efficient and cost effective solution which allows us to consolidate the reset sources

for WARMRSTN and drive the signal cleanly. The entire reset supervisor circuit can be

seen in Figure 44.

Perk:

A supervisor circuit (with manual reset input) has two specific functions. It asserts

a reset signal for a fixed period of time whenever the:

• supply voltage falls below a preset voltage.

• the manual reset input is asserted. (it may care of input button de-bouncing

also)

You can find more information about APX811’s operation by going through its

datasheet here.

http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://www.diodes.com/assets/Datasheets/APX811_812.pdf

55
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 44 Reset button and buffer with APX811 supervisor circuit

The connections are made as shown in Figure 44 (Schematic updates are shown using

dotted lines).

Let’s go layout corresponding traces to complete the reset circuit design process as

shown in Figure 45.

56

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 45 Reset circuitry layout

The components are placed in a specific manner in to accommodate future

components and facilitate easy routing.

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

9 OSD335x Clock Circuitry

9.1 Introduction
A clock is essential for the operation of any microprocessor. Therefore, proper design

of the clock circuit is pivotal to achieve reliable operation. This article will help you

understand the OSD335x Clock Circuitry design methodology.

9.2 The OSD335x OSC0 and OSC1

The OSD335x has two clock inputs. They are:

OSC0: This is the High Frequency Oscillator Input. This clock source is also called the

Master Oscillator. It operates at either 19.2MHz, 24MHz ,25 MHz or 26MHz. This clock

source provides reference for all non-RTC functions. The OSC0_IN, OSC0_OUT and

OSC0_GND pins are used for this clock input.

OSC1: This is the Low Frequency Oscillator Input. This clock source provides a reference clock for

the Real Time Clock (RTC) and operates at 32.768kHz. The OSC1_IN, OSC1_OUT and OSC1_GND

pins are used for this clock input.

OSC1 is disabled by default when power is applied. This clock input is optional and is

not required if the RTC (Real Time Clock) module is configured to receive clock from

internal 32kHz RC oscillator or if the RTC modules is not needed at all.

For more information on clock sub-systems, you can refer the Clock Management

section of the AM335x Technical Reference Manual.

The crystal oscillator circuit for OSC0 is shown in Figure 46.

Figure 46 Crystal Oscillator circuit for OSC0

o According to the AM335x datasheet, resistors Rbias and Rd are optional. For the

reference design, we added the footprint for Rbias to give us the flexibility to add a

resistor to the circuit if the default configuration (i.e., just C1 and C2 are connected)

http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/sprs717

58

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

did not provide the desired crystal performance. Additionally, Rbias’s footprint can

be left unpopulated if it is not needed since it is in parallel with OSC0_IN and

OSC0_OUT pins.

However, Rd is in series with the crystal and the OSC0_OUT pin, so it must always be

populated even if it is not needed, which adds cost to the design. We decided not to

add the footprint for Rd since we didn’t think we needed it and it makes the layout

cleaner.

For the reference design, we were happy with the performance of the crystal when

we just used a 1 MOhm resistor for Rbias. You will have to decide how to handle Rbias

and Rd based on your design and your crystal.

o C1 and C2 represent the total capacitance of the respective PCB trace, load

capacitor, and other components (excluding the crystal) connected to each crystal

terminal. The value of capacitors C1 and C2 should be selected to provide the total

load capacitance, CL, specified by the crystal manufacturer. The total load

capacitance is CL = [(C1 × C2) / (C1 + C2)] + Cshunt, where Cshunt is the crystal shunt

capacitance (C0) specified by the crystal manufacturer. As long as the layout

guidelines are followed, we can assume that the capacitance of the PCB

trace and other components is small and can be ignored in the calculation

of C1 and C2.

o For recommended crystal circuit component values for OSC0, check OSC0 Crystal

Circuit Requirements table in the AM335x datasheet.

o The AM335x supports either 19.2MHz, 24MHz,25MHz or 26MHz clock input for

OSC0. However, the software we will be using in future lessons assumes a 24MHz

input clock. Hence, we will be using 24MHz crystal oscillator 7A-24.000MAAJ-T from

TXC for OSC0. Based on the above mentioned guidelines for capacitor selection, we

will be using 18pF capacitors for both C1 and C2 for our OSC0 design.

Caveat:

The choice of OSC0 clock frequency will affect the boot-configuration pull down/pull-up
resistor setup. See the SYSBOOT Configuration Pins section of the AM335x Technical
Reference Manual for more information about boot configuration resistor setup.

http://www.ti.com/lit/gpn/am3359
http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/pdf/spruh73

59
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 47 Crystal Oscillator circuit for OSC1

o The crystal oscillator circuit for OSC1 is shown in Figure 47 and is the same as the

oscillator circuit for OSC0. For the reference design, we do not need either Rbias or Rd

since OSC1 has an internal resistor. However, as discussed above, we have placed a

footprint for Rbias but not for Rd to give us the flexibility to adjust the crystal

performance without increasing the design cost. For recommended crystal circuit

component values for OSC1, check OSC1 Crystal Circuit Requirements table in the

AM335x datasheet.

OSC1 circuit operates in the same way as OSC0 circuit.

o The AM335x only supports a 32.768kHz clock input for OSC1 input. Therefore, we will be

using the 32.768kHz crystal oscillator ABS07-32.768KHZ-T from Abracon LLC for OSC1

design. Based on the guidelines above for capacitor selection, we will be using 18pF

capacitors for both C1 and C2 for our OSC1 design.

http://www.ti.com/lit/gpn/am3359

60

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Now let’s add OSC0 and OSC1 circuits into our schematics as shown in Figure 48.

Figure 48 OSD335x Clock circuitry schematic

Perk:

OSC0 and OSC1 clock inputs can also be sourced from digital oscillator chips like

SIT8008BCE7-18E (for OSC0) and ASDK2-32.768KHZ-LRT (for OSC1). Use of

digital oscillators will significantly reduce the complexity of the circuit but does

add cost. A discussion on digital oscillator chip is beyond the scope of this article.

https://www.digikey.com/product-detail/en/sitime/SIT8008BCE7-18E/SIT8008BCE7-18E-ND/6170041
https://www.digikey.com/product-detail/en/abracon-llc/ASDK2-32.768KHZ-LRT/535-10003-1-ND/2001626?WT.srch=1&gclid=COGhlN_yzNQCFRu5wAodnEcE2g

61
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

9.3 Layout guidelines

Here are the guidelines we used for crystal oscillator layout in this design:

o The crystal oscillator is sensitive to noise from other signals. Other digital activities on

the board may also distort the small amplitude sine wave from the crystal oscillator.

Therefore, care should be taken when placing components or routing signals near the

oscillator circuit to avoid capacitive coupling.

o The crystal oscillator circuit components should be placed close to the OSD335x.

o For the OSD335x, each oscillator has an oscillator ground. This should be used

as the ground reference for the oscillator.

o Try not to route any other signal under the oscillator circuit wherever possible.

o If routing signals under the oscillators, then try to make sure that the signal

traces cross at right angles vs running parallel to oscillator traces to minimize

coupling.

o Avoid right angle traces.

o Avoid vias for clock signals if possible. If not possible, then make sure that

there is enough keep out in the inner planes to not cause excessive noise on

inner plane layers.

o The length of clock signal traces should be matched as much as possible.

Let’s layout the traces for OSC0 and OSC1 as shown in Figure 49.

62

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 49 OSD335x OSC0 and OSC1 layout

9.4 RTC_KALDO_ENN

Figure 50 Grounding RTC_KALDO_ENN pin

The AM335x processor inside the OSD335x consists of an RTC (Real Time Clock) with

the potential to support an RTC-Only mode. However, the OSD335x DOES NOT support

RTC-Only mode because we have used the C version of TPS65217 which does not

support RTC-Only power mode. Although RTC-Only mode is not available, we would

like to enable and use RTC digital core along with other modules of the processor to

keep track of time.

63
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

The RTC digital core has an internal RTC LDO which can supply power to it.

CAP_VDD_RTC (the supply pin for the RTC core) gets power from the internal RTC LDO

if the RTC_KALDO_ENn (active low) pin is pulled low as shown in Figure 50. If

RTC_KALDO_ENn is pulled high, the internal RTC LDO will be disabled and

CAP_VDD_RTC will have to be connected to VDD_CORE to power the RTC core

externally.

Figure 51 OSD335x clock circuitry layout

On completion of clock circuitry layout, the board should look like Figure 51 (assuming the

board is also populated with power and reset circuitry from previous articles).

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

10 OSD335x Peripheral Circuitry

10.1 Introduction
Now that the power, reset and clocks are all connected, we need to add the ability to

program the OSD335x to make our design useful. To program the OSD335x, we are

going to use the JTAG connection to the processor (later lessons will look at other

boot devices). To enable us to do some fun things with our design, we will add a

couple of general purpose LEDs, switches, and a multipurpose peripheral header. The

header will allow us to connect daughter boards to extend functionality.

10.2 JTAG

For this design, we do not include any non-volatile storage to allow us to boot and run

an OS by default. Therefore, all programs will need to be loaded via the JTAG

interface.

The JTAG circuit can be built on the schematic as shown in Figure 52. This uses a

standard 20-pin connector and supports most JTAG debuggers. The JTAG header can

be found in the given library under the device name CTI-JTAG.

Figure 52 JTAG schematics

The JTAG connections can be made in the layout as shown in Figure 53.

Perk:

More information about JTAG interface can be found at here.

https://octavosystems.com/files/osd335x-ref-design-lesson-1-eagle-library/
https://www.xjtag.com/about-jtag/what-is-jtag/

65
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 53 JTAG layout

66

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

10.3 Boot configuration

Figure 54 Boot configuration schematic

LCD_DATA0 to LCD_DATA15 pins are multiplexed with the SYSBOOT boot configuration

pins of the OSD335x. More information about the function of each of these pins can be

found in SYSBOOT Configuration Pins section of the AM335x Technical Reference

Manual (TRM). SYSBOOT[0] corresponds to LCD_DATA0 while SYSBOOT[15]

corresponds to LCD_DATA15.

Using the boot configuration pins for this design, we will:

o Set clock frequency to 24MHz.

o Disable CLKOUT1 output through XDMA_EVENT_INTR0 since this pin will only

be used for JTAG emulation.

o Set the boot sequence to SPI0 -> MMC0 -> USB0 -> UART0

By default, if no valid boot images are found during the boot sequence, then JTAG

can take control of the processor to allow software to be loaded.

To achieve this, we need to set SYSBOOT[15:0] = 0x4018. We can build the schematic

for the boot configuration as shown in Figure 54.

http://www.ti.com/lit/pdf/spruh73
http://www.ti.com/lit/pdf/spruh73

67
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 55 Boot configuration layout

The boot configuration connections in the layout are highlighted in Figure 55.

68

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

10.4 Buttons and LEDs

Figure 56 User LEDs and user buttons

For this design, we will add two push buttons and two LEDs. The buttons can be

connected to GPIOs GPMC_A06 and GPMC_A09. These two pins were chosen to make

routing easier. There was no de-bounce circuitry added to the buttons so any de-

bouncing must be done in software.

Also, let’s add two LEDs, one to GPIO GPMC_A02 and the other to a PWM capable

GPIO GPMC_AD15 so that we can exploit the PWM capability of the OSD335x. The

schematic for these connections is shown in Figure 56.

69
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 57 User LEDs layout

Figure 58 User buttons layout

The layout connections for user LEDs and user buttons can be made as shown in

Figure 57 and Figure 58.

70

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

10.5 Peripheral header

The OSD335x supports several serial communication protocols like UART, SPI and I2C.

These protocols can be used to communicate with and control external devices.

We can map these signals to a standard peripheral header to provide expandability

and additional functionality.

The peripheral header we’re using consists of a pair of 1x8 female headers with pin

configuration as shown in Figure 59. In the given library, the peripheral header can

be found under the device name MIKROE_CLICKMINI (MIKROE_CLICK). This

configuration is compatible with mikroBus® Click Board™. Click Boards are daughter

boards with a single IC, module or circuit that brings specific functionality to a target

main board. Hundreds of click boards are available with various types of sensors,

transceivers and functionality.

More description about mikroBus socket and Click boards can be found at:

https://www.mikroe.com/mikrobus/

You can browse through available click boards at:

https://shop.mikroe.com/click.

The peripheral header schematic is given below:

Figure 59 Peripheral header schematic

https://octavosystems.com/files/osd335x-ref-design-lesson-1-eagle-library/
https://www.mikroe.com/mikrobus/
https://shop.mikroe.com/click

71
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 60 Peripheral header layout

The footprint for peripheral header is shown in Figure 60 and the connections are

highlighted.

10.6 Finalizing the silkscreen

Silkscreen on a PCB is used to identify components, test points, warning symbols,

certification symbols, company logos, PCB name and revision, and any other text that

is necessary to document the functionality of the board. During the placement and

routing phases of the board design, you should not really worry about the silkscreen.

However, now that we have completed placement and routing of all the components

on the PCB, we need to make sure that the silkscreen is readable. We need to make

sure:

o All the component designators are placed appropriately next to their

corresponding components.

o Pin 1 is marked for necessary components. This includes all ICs, connectors

and polarized capacitors.

o There is no silkscreen over any component pads. This can lead to bad solder

joints.

o The font size of the component designators is as large as possible given the

space constraints of the board so that the text is readable.

72

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o Try to not place silkscreen over vias. Silkscreen has a hard time adhering to

the annular ring of a via which can make the text difficult to read.

When designing a board, the actual size of the text can be deceiving since the view in

the design tool is generally many times larger than the actual board. The minimum

font size you should use is 24mils with 8% ratio. Depending on your eyes, a font size of

32mils with an 8% ratio is readable without magnification. This is a good size for

passive designators, though in general bigger is better. You can also increase the ratio

of the text to make the line width thicker. This can help make the text more readable

but only up to a point. However, once you get larger fonts (over 50mils), you should

use larger ratios (12% or greater) to make the text more readable. It is recommended

that once you are done with updating the silkscreen, print out the silkscreen layers to

check their readability.

You can also import a picture of your logo into Eagle and add it into your layout. You

can learn more about the procedure to import images here. For our design, we have

added Octavo Systems logo along with the lesson name and revision number as shown

in Figure 62, Figure 63 and Figure 64.

10.7 Expected outcome
Now that we have completed building the schematic and layout, the complete

schematic should look similar to Figure 61 and complete layout should look similar to

Figure 62, Figure 63 and Figure 64.

Figure 61 Lesson 1 complete schematic

http://www.instructables.com/id/Adding-Custom-Graphics-to-EAGLE-PCB-Layouts/

73
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 62 Lesson 1 complete layout with pour outlines

Figure 63 Lesson 1 complete layout with pour

74

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 64 Lesson 1 complete layout with all layers turned on

10.8 PCB order process
The PCB order process begins with Bill Of Material (BOM) generation. EAGLE is capable

of maintaining manufacturer and part number for each component so the schematic

can be the controlled document for manufacturing information. The BOM.ulp can be

used to output this data in an easily readable format. Once BOM is generated, the

components can be purchased.

The next step is gerber file generation for PCB manufacturing. More information on

gerber file generation, gerber verification and order placement can be found here.

http://hackaday.com/2009/01/15/how-to-prepare-your-eagle-designs-for-manufacture/

 OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

11 OSD335x Bare Minimum Board Boot Process

11.1 Introduction
This document will take you through the bring-up process of the Printed Circuit Board

(PCB) developed as part of the OSD335x Reference Design Lesson 1.

We begin with bringing-up the newly manufactured board (PCB) to make sure it is

functional followed by the necessary software environment setup. We conclude with

the demo applications to verify the overall functionality of the board.

11.2 The Board (PCB)

The board built as part of previous articles of this lesson should look similar to Figure

65 (Assuming you chose Red color for solder mask and white color for silk screen):

Figure 65 OSD335x Bare Minimum Board

11.3 Basic board bring-up

This section describes the various tests that need to be done during the board bring-

up process.

11.3.1 Tests before board power-up

The newly manufactured PCB should be examined before powering it up for the first

time to prevent damage to the board.

o Use a Digital Multi Meter (DMM) to make sure there are no shorts

(resistance<=100ohms) between:

- Power input pins and ground.

- Power output pins and ground.

- Between power inputs and power outputs - This is where all the test

points can be very helpful.

76

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

- If there are any shorts, try to locate the source of the short. This can be

done by:

▪ Examining schematics and layout.

▪ In many cases, the only way to isolate shorts is to remove
components connected to the short one by one until the short is
resolved.

▪ Once you have discovered the source of the problem, you can try
to modify the board to fix the issue. This can involve cutting
traces or re-wiring components. Unfortunately, sometimes boards
cannot be fixed and the design must be re-spun (i.e., schematics
and layout updated and boards re-manufactured). If you have to
re-spin a board, please make sure to update the revision code on
the board.

o Use a DMM to check the resistance between:

- All power inputs, power outputs and ground.

- Between power planes and ground.

- In any case, if the resistance is less than 100ohms, you need to be very

careful during power-up to make sure no components have issues.

o Check if the correct components are used by reading the marking on the devices.

o Check if the orientations of the components are correct.

After performing all the above tests, we can power up the board using the DC barrel

jack. If everything goes well, you should see the power LED PWR light up as shown in

Figure 66.

Figure 66 PWR LED after successful power up

77
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

11.3.2 Possible problems after board power-up

Once the board is powered up, if you observe sparking, overheating or smoke from

any of the components, TURN OFF POWER TO THE BOARD IMMEDIATELY to avoid

further damage to the board and prevent a possible fire hazard. For any component

that failed, please make sure:

o The symbol pinout of the component in schematic matches with its datasheet

pinout. Please make sure that you have the latest version of the datasheet

since documentation can be updated / corrected between the time of symbol

creation and board manufacture.

o The footprint of the component on PCB matches with the footprint specified on

its datasheet.

o The symbol to footprint pin mapping is correct.

o All the components are supplying power within their specified output current

limits. For example, if you notice that the voltage of one of the power outputs

of the SiP, let’s say, SYS_VDD1_3P3V, is low (less than 3.3V), there is a

possibility that too much current is being drawn from it. Make sure the current

output of SYS_VDD1_3P3V is within its maximum value to restore its output

voltage to 3.3V.

o If possible, try to solve the problem by manually cutting suitable traces on the

PCB/making connections using a thin wire. If the problem cannot be solved

using these methods, you will have to re-spin the board.

11.3.3 Tests after power-up

If the power LED is lit and you don’t observe any smoke, sparking or heating issues

then we can consider it a successful power-up. But, this does not mean the board is

fully functional. We can test for functionality by running demo applications. Before

running the demo applications:

o Check the following voltage levels using the available test points/pads:

Perk:

More information about using Digital Multi Meters can be found here.

Caveat:

Boards should only be powered up for the first time in a good work environment

with proper safety equipment like fire extinguisher, non-flammable ESD

workbench, safety glasses, fume extractor (to remove soldering smoke) etc. Please

make sure your work environment is proper before doing any board bring-up work.

https://learn.sparkfun.com/tutorials/how-to-use-a-multimeter

78

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

- Verify if VIN_AC is at 5V (assuming you’re using DC barrel connector for

power input).

- Verify if SYS_VOUT is at 5V (assuming you’re using a 5V power input).

- Verify if SYS_VDD1_3P3V is at 3.3V.

- Verify if SYS_RTC_1P8V is at 1.8.

- Verify if the test pad PGD (PMIC_OUT_PGOOD) is at 1.8V and WRST

(WARMRSTN) is at 3.3V to make sure the OSD335x is not being held in reset.

If any of the above voltages are not at the desired level, please use the test

points/test pads with an oscilloscope and DMM to find out which component(s)

is responsible for the erroneous voltage. One thing to be aware of is that the

voltage on a power rail or signal pin can drop if the load is trying to draw more

current than the source can provide.

If you’ve made it this far through the article and if everything looks good on

your board, pat yourself on the back. Good job! Now you’re ready to run some

code!

79
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

11.4 Setting up software environment (for Windows 7,8 and 10 OS)

11.4.1 Installing Code Composer Studio

For our design, we will use the Code Composer Studio (CCS) Integrated Development

Environment (IDE) to compile, debug and load programs to the OSD335x. The OSD335x

uses the AM335x processor from Texas Instruments (TI). Therefore, for the AM335x,

we will use the IDE developed and supported by TI. You can use third party IDEs and

compilers if necessary.

Steps to install Code Composer Studio:

o You can download the CCS 7.2.0.00013 (which was the latest version at the

time of writing this article) installer from this page. The below mentioned

steps are for the offline installer. All the demo applications have been tested

on CCS 7.2.0.00013 and CCS 6.2.0.00050. You may use CCS 6.2.0.00050 if

you face compatibility issues with CCS 7.2.0.00013.

o Midway through the installation process, the installer will ask you to Select

Product Families to be installed. Choose Sitara as shown in Figure 67 and

click next (if you plan to use CCS for other TI processors, you should select to

install those now; else you will have to completely re-install CCS if you need to

add support for other processors).

Figure 67 CCS Product family selection

o We are using XDS100v2 debug probe. Therefore, we will choose XDS under

debug probes, as shown in Figure 68 and hit next. If you are using a different

http://processors.wiki.ti.com/index.php/Download_CCS
https://store.ti.com/TMDSEMU100V2U-20T-XDS100v2-JTAG-Debug-Probe-20-pin-cTI-version-P1848.aspx

80

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

debugger, please select and install those instead. Follow the onscreen

instructions to complete the installation.

Figure 68 CCS debug probe selection

11.4.2 Installing StarterWare

StarterWare is a free software development package that provides bare metal

(non-OS) platform support for ARM and DSP TI processors. StarterWare includes

Device Abstraction Layer (DAL) libraries and example applications that

demonstrate the capabilities of the peripherals on the TI processors. StarterWare

also provides pre-built binaries for quick evaluations on the target. To keep things

simple and to avoid using an OS like Linux, we will be using StarterWare platform

for this lesson. Linux will be introduced in the next lesson.

To install StarterWare:

o Go to http://processors.wiki.ti.com/index.php/StarterWare.

o Download StarterWare 02.00.01.01 for the AM335x (TI Account Login required.

You can download the software only if TI approves it).

o Install StarterWare 02.00.01.01 using on screen instructions.

11.4.3 Debugger

To load the program to the OSD335x, we need a debugger. We have tested the demo

applications using XDS100v2 from Spectrum Digital (shown in Figure 69). You are free

to use other debuggers if you have them. We have only validated operation on the

XDS100v2 which you can get here.

http://processors.wiki.ti.com/index.php/StarterWare
https://store.ti.com/TMDSEMU100V2U-20T-XDS100v2-JTAG-Debug-Probe-20-pin-cTI-version-P1848.aspx

81
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 69 XDS100v2 Debugger

11.5 Demo Applications

11.5.1 Demo Application 1: LED Dimmer

The objective of this application is to demonstrate the use of the GPIO and EHRPWM

peripherals within the OSD335x.

The Demo Application 1 generates a hardware PWM signal on the

EHRPWM1A(GPIO1_18) pin which is connected to LED D2 on the board and a software

PWM signal on the GPIO1_15 pin which is connected to LED D3 on the board. The

brightness of each of these LEDs will be controlled by their respective PWM duty

cycles and will be set to the maximum value (i.e., always on) in the beginning.

The duty cycle of the hardware PWM signal for LED D2 will be controlled by button

BTN1. When the button is first pressed and held, the duty cycle will slowly decrease,

which will cause the LED to dim. This will continue until the minimum duty cycle is

reached, and the LED will be off. If you continue to press the button, the duty cycle

will then increase, which will cause the LED to brighten back up to the maximum duty

cycle. This process repeats itself as long as BTN1 is pressed. The duty cycle of the

software PWM signal for LED D3 will be controlled by button BTN2. The behavior of

the PWM duty cycle controlled by BTN 2 is same as that of BTN1.

All the CCS design files required for Demo Application 1 and Demo Application 2 can

be found here.

11.5.2 Running Demo Application 1

o Open CCS.

o Create a new CCS Project (In Project Explorer, right click > New >CCS Project)

o Name the project as RefDesL1Demo1. Configure the project as shown in Figure

70 and hit Finish.

Target: AM3358.

https://octavosystems.com/files/osd335x-reference-design-lesson-1-ccs-design-files/

82

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Connection: Texas Instruments XDS100v2 USB Debug probe.

Compiler version: TI v16.9.3.LTS or higher.

Project template: Empty Project (with main.c).

Figure 70 Demo Application 1 project settings

The compiler will need access to many different StarterWare folders and

libraries in order to compile our code. Add the following paths to the ARM

Compiler’s Include Options as shown in Figure 71 (To find Compiler Include

Options, right click on Project Name in Project Explorer > Properties > CCS

Build > ARM Compiler > Include Options. The below paths are given assuming

you have installed StarterWare at C:\ti. If not, alter the path suitably):

- C:\ti\AM335X_StarterWare_02_00_01_01\include

- C:\ti\AM335X_StarterWare_02_00_01_01\include\armv7a

- C:\ti\AM335X_StarterWare_02_00_01_01\include\armv7a\am335x

- C:\ti\AM335X_StarterWare_02_00_01_01\include\hw

83
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 71 Compiler Include Paths

84

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

The linker will need access to many different StarterWare folders and libraries

in order to build our code. Add the following paths to the ARM Linker’s File

Search Path as shown in Figure 72 (To find Linker File Search Path, right click

on Project Name in Project Explorer > Properties > CCS Build > ARM Linker >

File Search Path. The below paths are given assuming you have installed

StarterWare at C:\ti.If not, alter the path suitably):

- C:\ti\AM335X_StarterWare_02_00_01_01\binary\armv7a\cgt_ccs\utils/${Con

figName}\utils.lib

- C:\ti\AM335X_StarterWare_02_00_01_01\binary\armv7a\cgt_ccs\am335x\dri

vers/${ConfigName}\drivers.lib

- C:\ti\AM335X_StarterWare_02_00_01_01\binary\armv7a\cgt_ccs\am335x\sys

tem_config/${ConfigName}\system.lib

- C:\ti\AM335X_StarterWare_02_00_01_01\binary\armv7a\cgt_ccs\am335x\ev

mskAM335x\platform/${ConfigName}\platform.lib

Figure 72 Linker Search Paths

Caveat:

Make sure you use forward slash (/) with the project macro ${ConfigName} as

/${ConfigName} in the paths above. Otherwise, CCS will not resolve

${ConfigName} into its value.

85
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o Delete main.c from your project. Download RefDesL1Demo1.c from and add it

to the project.

o The default linker command file, AM335x.cmd and the given startup code file,

init.asm that CCS provides are not suitable for our Demo Applications because

of the following reasons:

- The default linker command file uses the default startup code which sets

the processor to User Mode before calling main() function. But, the

processor needs to be in Privilege Mode/System Mode to be able to write

to GPIO control module registers for the GPIO or EHRPWM registers as part

of our demonstration projects.

- The given startup code file, init.asm, is configured to operate using

external DDR3 with 4KB of stack assigned for interrupt requests. While the

DDR3 memory exists in the OSD335x, we do not have the DDR initialization

code in the demonstration program and therefore need to run the program

using only the AM335x internal memory. Given that we are using internal

memory, we will have to reduce interrupt request stack size to 256B.

To solve the above problems, Octavo Systems provides two files:

AM335x.cmd and init.asm, which make CCS use custom startup code before

calling main() function. The custom startup code sets the processor to

System Mode before calling main() function. It also reduces the interrupt

request stack size to 256B.

Delete the default AM335x.cmd file under your project files and replace it

with the modified AM335x.cmd file (provided as part of CCS design files.

Link given above) as shown in Figure 73.

Figure 73 CCS Project Explorer

Import system_config project from (folder path is given assuming you have

installed StarterWare at C:\ti, otherwise adjust the path accordingly):

C:\ti\AM335X_StarterWare_02_00_01_01\build\armv7a\cgt_ccs\am335x

Delete the default init.asm file under this project and replace it with the

modified init.asm file (can be downloaded from the link above) as shown in

Figure 74. Build the project using the build button as shown in Figure 75.

86

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 74 Adding custom init.asm file

o Before we can run the demo application, we need to build 3 libraries: utils.lib,

drivers.lib, and platform.lib. We will be using many APIs from these libraries

in our Demo Applications. To build the libraries, you need to (folder paths are

given assuming you have installed StarterWare at C:\ti, otherwise adjust the

path accordingly):

- Import utils project from

C:\ti\AM335X_StarterWare_02_00_01_01\build\armv7a\cgt_ccs

- Import platform project from

C:\ti\AM335X_StarterWare_02_00_01_01\build\armv7a\cgt_ccs\am335x\evm

skAM335x

- Import drivers project from

C:\ti\AM335X_StarterWare_02_00_01_01\build\armv7a\cgt_ccs\am335x

- Build each of the above projects by selecting the project and hitting the

build button as shown in Figure 75.

Figure 75 CCS Build button

87
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o Now we are ready to build Demo Application 1. Select RefDesL1Demo1

project and build it. If you have followed all the instructions given above, it

should build without errors.

o Connect the debugger to your computer.

o Connect the 20 pin JTAG connector of the debugger to the JTAG header on the

board.

88

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o Power up the board. Caveat:

Before you try to load the Demo Applications through the JTAG debugger, you

need to make sure the JTAG connection is setup properly and there are no

connection issues. To check the JTAG connection, follow the steps below:

o In the drop down menu of your project folder, open targetConfigs drop

down menu and then open AM3358.ccxml file as shown below.

o Click on Test Connection button to test the JTAG connectivity as shown

below. CCS will perform a series of tests and you should receive the JTAG

DR Integrity scan-test has succeeded message or something similar at the

end of the testing process.

You can use the TI’s Debugging JTAG Connectivity Problems wiki page to resolve

any errors, if any. Probe the clock signals and use an oscilloscope to make sure

OSC0 is operating at 24MHz and OSC1 is operating at 32.768KHz if JTAG

connectivity test fails repeatedly.

You can continue with the Demo Application debug process once the JTAG

connection is successfully verified.

http://processors.wiki.ti.com/index.php/Debugging_JTAG_Connectivity_Problems

89
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

o Press the Debug button as shown in Figure 76.

Figure 76 CCS Debug button

o Once the program gets loaded, you should see the below screen (Figure 77). Hit

the Resume button to run the program on the board.

Figure 77 CCS Run button

o Verify the functionality of Demo Application 1 by pressing the user buttons

BTN1 and BTN2 and observing the brightness of user LEDs D2 and D3 as shown

in Figure 78.

90

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 78 Demo App 1 in action

11.5.3 Demo Application 2: Motion Detector

The objective of this app is to demonstrate the use of peripheral header with the

OSD335x.

This project uses the MOTION click board

(https://shop.mikroe.com/click/sensors/motion). It can be directly plugged into the

peripheral header. The MOTION click board detects motion of living bodies. It picks up

the IR radiation emitted by living bodies using its PIR sensor. Whenever a motion is

detected, it sends an interrupt to the OSD335x using the INT pin of peripheral header.

The OSD335x detects this interrupt and alternatively blinks LED D2 and LED D3 to

indicate motion detection.

11.5.4 Running Demo Application 2

The procedure to run Demo Application 2 is exactly same as that of Demo Application

1 except that you have to use RefDesL1Demo2.c from instead of RefDesL1Demo1.c.

Figure 79 shows Demo App 2 in action.

Perk:

Generally, most errors that arise are due to compiler or linker path problems.

Please pay extra attention while setting these paths.

Code Composer Studio does a good job in pointing out errors. Whenever there is an

error, please go through the error message carefully. This will help you isolate the

problem quickly so that it can be fixed.

https://shop.mikroe.com/click/sensors/motion

91
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 79 Demo Application 2 in action

92

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

OSD335x Lesson 2

Introduction to Bare Minimum Circuitry for Linux Boot

The objective of this lesson is to help you become familiar with the bare minimum

setup required to boot Linux on the OSD335x by building upon concepts and PCB

design that was presented as part of Lesson 1. Lesson 2 is covered in Chapters 12

through 18.

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/

93
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

12 Introduction to Bare Minimum Circuitry for Linux Boot

12.1 Introduction
The objective of this lesson is to help you become familiar with the bare minimum

setup required to boot Linux on the OSD335x by building upon concepts and PCB

design that was presented as part of Lesson 1. Similar to Lesson 1, this lesson will

consist of a series of articles which will walk you through every step of the design

process. We start from specifications and guide you through every step till debugging

the manufactured Printed Circuit Board (PCB). The lesson will conclude with a PCB

that verifies the design by putting together everything that was taught.

Recall that in Lesson 1, we built a PCB that could

boot a bare metal application (using TI StarterWare)

on OSD335x without the need of an OS. In Lesson 2,

we will be adding USB connectivity and non-volatile

memory to the Lesson 1 PCB design so that it can

boot Linux. Lesson 1 PCB and expected Lesson 2 PCB

designs that you can build yourself by following the

steps.

Similar to Lesson 1, this lesson will consist of

a series of articles, which will walk you

through every step of the design process. We

start from specifications and guide you

through every step till debugging the

manufactured Printed Circuit Board (PCB).

The lesson will conclude with a PCB that

verifies the design by putting together

everything that was taught.

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/

94

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

 Figure 80 OSD335x Lesson 2 Block Diagram

For Lesson 2, we will be starting from the Lesson 1 block diagram and adding
connectivity and non-volatile storage in order to demonstrate some of the capabilities
of Linux as shown in Figure 1. We will walk through articles on:

• USB circuitry which will provide connectivity

• MMC circuitry which will provide non-volatile storage

• EEPROM circuitry which will provide non-volatile board configuration
information

• Useful information on configuring the Linux Device Tree for a new board

• Tips on board bring-up and debug as well as demo examples

12.2 CAD Environment Setup

The Lesson 1 PCB design will serve as a foundation for Lesson 2. Hence, we need to

first download and open Lesson 1 Eagle PCB Design files. You can download Lesson 1

design files here.

https://octavosystems.com/files/osd335x-ref-design-lesson-1-design-files/

95
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

To accommodate the additional components, we will need to increase the length of

Lesson 1 PCB. Except the length all other parameters can be maintained the same:

• New Board Size: 2500mil x 2750mil (2.5inch x 2.75inch)

• Number of layers: 4 layers

• Trace width: 6mil (approx. 0.15mm). Since power traces generally carry

more current, we will be using larger traces (at least 15mil or 0.4mm) for

them

• Trace spacing: 6mil (approx. 0.15mm)

• Minimum drill and via size: 12mil (approx. 0.30mm) drill and 24mil (approx.

0.60mm) finished via diameter (i.e., 6 mil annular ring)

Using these standard PCB design rules will help us reduce manufacturing cost. For

your design, you are free to select the appropriate rules for your manufacturer and

components that suit your design.

12.2.1 Library Setup

Octavo Systems provides an updated Eagle library for Lesson 2,

OSD3358_BAS_RefDesignParts_L2.lbr, that contains the schematic symbol and

footprint for all the additional components required for Lesson 2. The library can be

downloaded here.

12.2.2 Schematic Setup

• Rename the Lesson 1 schematic file RefDesL1.sch as RefDesL2.sch and layout

file RefDesL1.brd as RefDesL2.brd.

• Make sure Eagle is setup properly to use the updated Lesson 2 library

(OSD3358_BAS_RefDesignParts_L2.lbr).

• Open RefDesL2.sch. The schematic should look similar to Figure 5. This will

serve as a good starting point for Lesson 2 design.

• It is up to you to change the label, date and revision number on each

schematic page as necessary.

https://octavosystems.com/files/osd335x-ref-design-lesson-1-eagle-library/

96

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 81 Lesson 1 schematic serving as a good starting point for Lesson 2

12.2.3 Layout (Board) Setup

• Open RefDesL2.brd file.

• The layer stack up is shown in Figure 6. We’ll be using Top and Bottom

layers for signal routing. Route2 layer acts as power plane. Route15 layer

acts as ground plane.

97
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

 Figure 82 Layout Layer stack up

• The layout should look similar to Figure 7.

Figure 83 Lesson 1 layout serving as a good starting point for Lesson 2

• Extend the lower end of the PCB boundary and move the ESD rings by

750mils to make space for new components that will be added in this

lesson. After the extension, the layout should look similar to Figure 84.

98

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 84 Lower end of PCB extended by 750mils

99
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

12.3 OSD3358-512M-BAS Pin Distribution

Figure 85 OSD335x BGA pin arrangement

Figure 8 gives visual representation of the OSD335x BGA pin arrangement. This will

help us plan the placement of additional components on Lesson 2 board.

100

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

13 USB Circuitry

13.1 Introduction

The Universal Serial Bus (USB) is an industry standard that was introduced in 1996 to

standardize the connection between computer peripherals. USB interfaces are used to

exchange data and power between two or more devices. USB has been successful in

replacing several older and slower interfaces like serial ports and parallel ports.

The OSD335x has two independent identical USB 2.0 peripherals (USB0 and USB1).

Each peripheral supports USB Host, Peripheral (Client), and On-The-Go (OTG) modes

with a line/bus speed of up to 480Mbps.

This article will give you necessary information about the different USB pins, how to

put the USB peripherals of the OSD335x into the different USB modes,

schematic/layout methodology and USB Testing for OSD335x.

13.2 USB Pins

USB 2.0 connectors have either 4 or 5 pins, depending on the form factor / USB mode.

These pins are:

Table 1 USB Connector Pins

Pin Type Description
VBUS Power 5V power rail

DM (or D-) I/O
USB Data Differential Pair

DP (or D+) I/O

ID I
USB Mode Control Pin

(not present on 4 pin connectors)

GND Power Ground

A USB 2.0 Host connector has 4 pins (ID is assumed to be grounded) and can provide

up to 500 mA of current at 5V. A USB 2.0 Peripheral (Client) port has 4 pins (ID is

assumed to be high) and can source up to 500mA of current at 5V. A USB 2.0 OTG port

requires 5 pins. This allows the port to be dynamically configured to be either a Host

or a Peripheral (Client) by setting the ID pin voltage level.

When configured as a Host port, the USB controller will act as a master and send data

and commands to the attached slaves. When configured as a Peripheral (Client) port,

the USB controller will act as a slave and respond to data and commands sent to it by

the master (Host).

The USB peripherals of the OSD335x contain the physical interface circuitry (PHY) to

allow them to talk directly to other USB devices and each can be configured

101
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

independently as either a Host or a Client. To support this configurability, each USB

peripheral has seven pins which are listed in Table 2.

Table 2 USBx Pins

Pin Type Description
USBx_DP I/O

USBx Data Differential Pair
USBx_DM I/O

USBx_DRVVBUS O USBx external power logic control

USBx_VBUS I USBx external power logic voltage sense

USB_ID I USBx Mode Control Pin

USB_CE O USBx Charge Enable

• USBx_DP/DM: These are differential I/O pins that carry data.

• USBx_DRVVBUS: The USB peripherals themselves cannot supply the

necessary current to support Host mode. Therefore, the USBx_DRVVBUS

output pin was provided to control external 5V power logic used to supply

power to a Host port.

• USBx_VBUS: This input pin is used to sense the voltage of the VBUS pin .

For the USB peripheral to be enabled, a valid voltage (>=4.4V) should be

placed on this pin.

• USB_ID: The mode of USB peripheral depends on the state of this pin.

• USB_CE: Each USB PHY contains circuitry that can automatically detect the

presence of charger on the USB port. If a charger is detected, this pin goes

high and remains high until the charger is disabled through software. For

more information, please refer USB Charger Detect section of AM335x TRM

(Section 9.2.4.4.2 of SPRUH73P). In general, this pin is not used.

http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

102

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

13.3 USB Modes and their Configuration on the OSD335x

The three different USB modes supported by the USB peripherals of the OSD335x are

described in this section.

13.3.1 USB Host Mode

In Host mode, the USB port will be able to supply power, control and communicate

with all the connected Client devices. For example, the USB ports on most desktop

computers and laptops operate in Host mode.

The USB peripherals of the OSD335x can be configured in Host mode in 2 ways:

Hardware Method: Ground the USBx_ID pin and use an appropriate USB A type

connector on the cable end.

Software Method: Program the firmware to set the respective USBxMODE register

IDDIG bit to 0.

Once the USB controller determines its role is a Host, it will drive USBx_DRVVBUS pin

high to enable external 5V power logic and wait for USBx_VBUS input pin to go high. If

USBx_VBUS does not go high (>=4.4V) within the next 100ms, it will generate a VBUS

error interrupt that can be handled by software. However, if a valid voltage is found

on USBx_VBUS, the controller will wait for a Client device to connect.

13.3.2 USB Peripheral (Client) Mode

In Client mode, the USB device receives power from the Host and the device can only

communicate with the Host. The USB peripherals can be configured in Peripheral

(Client) mode in 2 ways:

Hardware Method: Leave the USBx_ID pin floating and use an appropriate USB B type

connector on the cable end.

Software Method: Program the firmware to set the respective USBxMODE register

IDDIG bit to 1.

The USB controller will begin operating in Peripheral (Client) mode only if it detects a

valid voltage (>=4.4V) on USBx_VBUS input.

13.3.3 USB OTG Mode

On-The-Go (OTG) mode allows the USB port to dynamically switch between Host and

Peripheral (client) mode based on requirement in space constrained applications like

tablets or smartphones.

The USB peripherals in OTG mode assume the role of Host or Peripheral (Client) based

on the status of ID pin which is directly controlled by the USB cable.

103
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

The configuration of the USB peripherals for different modes in summarized in Table

3.

Table 3 USBx Mode Configuration

 Configuration
Through Hardware

OR

Through Software*

USB Host Ground USBx_ID Set IDDIG bit of USBxMODE register to 0

USB Client Leave USBx_ID floating Set IDDIG bit of USBxMODE register to 1

USB OTG USBx_ID is directly controlled by USB Cable
Connector

Set IDDIG bit to either 0 or 1 based on
mode requirement

* If the USBx mode is being controlled purely through software, you may have to suitable manage other registers also along with IDDIG pin. For more information, refer USB

Controller Host and Peripheral Modes Operation section of AM335x TRM.

13.4 USB Schematics

In this section, we will build schematics for to configure the USB1 peripheral in Host

mode and the USB0 peripheral in OTG mode.

Let’s begin with the USB1 as a Host port. As described in the previous section, a USB

Host port is required to supply power to its clients. Hence, we will need an external

5V power switch to supply the appropriate amount of power. The OSD335x will use

the USB1_DRVVBUS output to enable/disable the power switch and will use the

USB1_VBUS input to sense the presence of required output voltage. Given that there

is generally a lot of interaction with the USB port, it is important to add electro-static

discharge (ESD) protection to the signals going to the processor. Therefore, a 4-

channel ESD Protection chip has also been added to the circuit.

For this lesson, we will be using be using a TPS2041 external power switch, a

TPD4S012 4-channel ESD Solution, and an AMP 787616-1 USB A Female Connector. You

may use different components in your design based on your requirements.

In order to isolate the power supplied by the board from any external noise on the

USB VBUS line, a Ferrite bead is placed between the output of the power switch and

the connector. Similarly, in order to isolate the USB1_VBUS input from any power

supply noise on the board, a Ferrite bead will be placed between the output of the

power switch and the USB1_VBUS input.

The symbols for the TPS2041, TPD4S012, AMP 787616-1 and Ferrite beads are

available in the provided library. The USB Host circuit can be built as shown in Figure

86.

http://www.ti.com/lit/ug/spruh73p/spruh73p.pdf

104

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 86 USB Host Schematic

The USB1 signal connections to the OSD335x are shown in Figure 87 (The changes

made are highlighted in the dotted lines).

Figure 87 USB1 Signal Connections

The active low Over Current output of the Power Switch (pin 5 of the TPS2501

attached to the USB1_OCN signal in Figure 86) can be connected to any of the GPIOs

of the OSD335x as shown in Figure 88 (GPMC_A10 pin is chosen in this case) to detect

issues with USB Client devices trying to draw more power than allowed.

105
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 88 USB1_OCN connection

Now, let’s configure USB0 as a USB Client (technically we will configure this as an

OTG port since we will connect the ID pin, but primarily this port will be used as a

client. To use this as a Host port, power will need to be applied externally to the

USB5V test point.). A USB Client can receive power from its host using the VBUS line

of the USB client connector. The OSD335x can source power from multiple input

sources, including 5 volts from a USB connector. Therefore, to provide flexibility

when powering this board, we can connect the VBUS line of the USB client connector

to the USB Power Input pins of the OSD335x, i.e., VIN_USB. Similar to the USB Host

connections, we also have to connect the VBUS input to the USB voltage sense input

of the OSD335x, USB0_VBUS, and add a TPS2041 ESD protection chip.

The symbol for USB Client Connector (10118192-0001LF) is available in the provided

library. The USB Client circuit is shown in Figure 89. This USB Client connector is the

same connector used in Lesson 1 for the USB Input Power. Now, we have to connect

the USB signals and ESD protection chip.

106

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 89 USB0 Client Circuit

The USB0 signal connections to the OSD335x are shown in Figure 90 (The changes

made are highlighted in the dotted lines).

Figure 90 USB0 Signal Connections

107
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

13.5 USB Layout

USB lines operate at very high speeds (up to 480Mbps) and use differential signaling.
Therefore, we need to follow certain guidelines to ensure good layout and proper
operation.

• Length matching the differential pair (D+ and D-) is critical in USB layout
design. The thumb rule is to maintain the length difference < 1%.

• If the trace lengths are mismatched, try to match them at the mismatched
end and not on the matched end using serpentine traces. When using
serpentine traces, the please be careful that the width between the bends
is greater than 3x the trace width and that all angles are at least 135
degrees. An example for this is shown in Figure 91.

Figure 91 USB Length Matching (©Texas Instruments)

• Route the differential pair symmetrically and parallel to each other.

108

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 92 Differential Pair Symmetry (©Texas Instruments)

• It is best to route the differential pair over a solid Ground plane. Avoiding

routing over split planes or plane voids.

• When through-hole USB connectors are used, it is better to route the

differential pair on the bottom layer instead of top layer so that the

connector pins can be directly reached on the bottom layer. This prevents

the connector pins from acting as stubs.

• Try to avoid routing differential pair near clock signals or any other signals

that may cause interference.

• The D+ to D- impedance must be 90 Ohms and the impedance of either line

to ground must be 30 Ohms. This is straight forward to do on a 4 layer PCB.

However, you can route USB on a two layer PCB. See

http://www.focusembedded.com/blog/high-speed-usb-in-a-two-layer-

pcb/ for a discussion on additional considerations to accomplish this.

Keeping the above guidelines in mind, the USB Host and Client circuitry can be laid

out as shown in Figure 93 and Figure 94 respectively.

http://www.focusembedded.com/blog/high-speed-usb-in-a-two-layer-pcb/
http://www.focusembedded.com/blog/high-speed-usb-in-a-two-layer-pcb/

109
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 93 USB Host Circuit Layout

110

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 94 USB Peripheral (Client) Circuit

13.6 USB Testing

Testing the integrity of USB signal is very important since it operates at high speed.

An eye diagram is commonly used for this purpose. The eye diagram test will measure

the rise time, fall time, undershoot, overshoot and jitter of USB signal. You can put

the official USB compliance logo on your device only after your device passes the

appropriate tests. More information about USB compliance tests and procedure can be

found here.

https://www.edn.com/design/test-and-measurement/4383098/USB-2-0-Compliance-and-beyond

111
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

14 Adding Non-Volatile Storage

14.1 Introduction

In order to store programs, files, and data so that Linux can boot easily and retain

information across power downs, non-volatile storage needs to be attached to the

OSD335x. This can be done using floating gate non-volatile memories such as

embedded Multi-Media Card (eMMC), Secure Digital (SD) Card, or electrically erasable

programmable read-only memory (EEPROM). The floating gates are used to store

information in the form of 0s and 1s and can retain data when power is removed from

the device.

The main differences between an eMMC or an SD Card and EEPROM are speed, data

density and longevity. EEPROM is typically byte addressable with limited read/write

cycles and has a lower data density. It also operates relatively slowly but has a much

lower cost when a small amount of non-volatile storage is required. Whereas, in an

eMMC or an SD Card (also known as Flash memory devices), data is read and written in

large blocks or pages which helps it operates faster. Since flash memory devices are

not byte addressable, all the circuitry required for byte addressability is removed and

hence they can pack a higher data density. Also, the longevity of flash memory

devices is higher than that of EEPROM. Hence, in embedded applications, eMMCs and

SD Cards are generally used to store the Linux OS, filesystem, applications and related

data whereas EEPROM is generally used to store board or device identification (ID)

and hardware configuration information.

The OSD335x has three MMC/SD Controllers that can interface with flash memory

devices like an eMMC or an SD Card. For our board, we will use MMC0 to interface

with a microSD Card connector and MMC1 to interface with an eMMC device.

The OSD335x also has many I2C peripherals can be used to interface with the EEPROM.

For our board, we will use the I2C0 peripheral to interface with the EEPROM. The

OSD335x has to use an external EEPROM for the board and device ID. However, the

OSD335x-SM integrates an EEPROM within the package. Within the OSD335x-SM, the

EEPROM is also connected on I2C0.

This article will help you connect an eMMC, SD card and EEPROM to the OSD335x by

giving you necessary information about their corresponding circuits, schematic and

layout. We will also be discussing the steps needed to finalize the Lesson 2 PCB design

and sending it for manufacturing.

14.2 MMC/SD Circuitry

Each MMC/SD instance of the OSD335x has several pins. The name and function of the

important pins are listed in Table 2.

112

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Table 4 MMCx Pins

Pin Type Description
MMCx_CLK I/O MMC/SD serial clock output

MMCx_CMD I/O MMC/SD command signal

MMCx_DAT [7:0] I/O MMC/SD data signals

MMCx_SDCD I SD card detect (from connector)

• MMCx_CLK: This pin provides the clock to a MMC or SD device from the

MMC/SD controller.

• MMCx_CMD: This pin is used for two-way communication between the

connected MMC or SD device and the MMC/SD controller. The MMC/SD

controller transmits commands to the device and the device drives

responses to the commands on this pin.

• MMCx_DAT [7:0]: Depending on the device you are using, you may need to

connect 1, 4, or 8 data lines. The number of DAT pins (the data bus width)

is set by the Data Transfer Width (DTW) bit in the MMC control register

(SD_HCTL) and DW8 bit in SD_CON register. For more information, see

MULTIMEDIA_CARD Registers section of AM335x TRM .  

• MMCx_SDCD: This input pin serves as the SD card detect. This signal is

generated by a mechanical switch on an SD card connector.

14.2.1 SD Card

The Device Tree of the Linux image you will be using expects an SD card on MMC0 and

an eMMC on MMC1 interface of the OSD335x. Therefore, we will use MMC0 for our SD

card circuit. The SD card circuit can be built around MMC0 as shown in Figure 95 and

Figure 96. According to JEDEC Standard No. 84-A43 which is the eMMC standard

implemented by the AM335x processor inside the OSD335x, MMC DAT and CMD lines

have to be pulled up to prevent them from floating when no card is inserted.

For this lesson, we used the SCHA5B0200 SD card connector. Its symbol and footprint
are available in the given library. This is a Push-Push Reverse Mount micro SD card
connector. At this writing, this part has been end-of-life’d by the vendor and we
would recommend the 1040310811 Push-Push top Mount micro SD card connector as
a substitute.

https://www.ti.com/lit/ug/spruh73p/spruh73p.pdf
https://www.jedec.org/document_search?search_api_views_fulltext=jesd84+a43

113
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 95 SD Card Circuitry

Figure 96 OSD335x SD Card connections

The SD card layout can be made as shown in Figure 97. The MMC bus operates at a

moderately high speed. Therefore, you should try to keep all of the traces of the bus

about the same length.

114

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 97 SD Card Layout

14.2.2 eMMC

Similar to the SD Card circuit, the eMMC circuit can be built around MMC1 as shown in

Figure 98 and Figure 99. The RST# input of the eMMC can be controlled by any of the

GPIOs of the OSD335x (we used the GPMC_A04 pin for this design).

For this lesson, we’ll be using Kingston 153 (HS200) 16GB eMMC. Its symbol and

footprint are available in the given library. However, it can be difficult to source

eMMC memory. As long as the memory follows the 153 ball JEDEC eMMC standard, it

can be used in this lesson.

115
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 98 eMMC Circuitry

116

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 99 OSD335x eMMC connections

The MMC peripheral within the AM335x supports the eMMC v4.3 JEDEC standard.

However, this is an older standard and it is difficult to find parts that only support the

eMMC v4.3 standard. Fortunately, the more recent eMMC v5.x standards are backward

compatible. From a design and layout perspective, the only caveat is that there are a

number of pins in the newer standard that must be understood. For example, there

are a number of No Connect (NC) pins on the eMMC pinout. NC pins are purely

structural and traces can route through those BGA balls to allow larger trace widths to

be used to route eMMC devices. However, some of the NC pins in the eMMC v4.3

standard are actually used or reserved for future use (RFU) in the eMMC v5.x

standards. Therefore, even though only the eMMC v4.3 signals are used, the device

should be routed avoiding all of the other used or RFU pins. A more complete

explanation is given in the Designing for Flexibility around eMMC application note.

Also, the eMMC v5.x pinout is shown in Figure 100 for your reference.

https://octavosystems.com/app_notes/designing-for-flexibility-around-emmc/

117
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 100 eMMC v5.x Pinout

The eMMC traces can be laid out as shown in Figure 101. Similar to the SD card layout,

you should try to keep all of the traces of the bus about the same length.

Figure 101 eMMC Layout

118

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

14.3 EEPROM Circuitry

During boot, the U-boot bootloader of the Linux image you will be using read an on-

board EEPROM for a board ID. This allows U-boot to configure the pins and set other

appropriate boot environment variables. By default, the Linux kernel will not boot

unless a valid board ID is found. However, this check can be bypassed in order to bring

up a board or to perform the initial programming of the EEPROM. Given that we will

be using a Linux image for this lesson, we need to have an EEPROM connected to I2C0

that is programmed with the appropriate information. More information about loading

data to the EEPROM or bypassing EEPROM board ID check can be found on our forum

posts #4733 and #4608.

The EEPROM circuit can be built as shown in Figure 102. By default, the Write Protect

(WP) pin is pulled high through a 10K Ohm resistor. This means that the EEPROM is

write protected and no data can be written to the EEPROM. In order to program the

EEPROM, we need to provide test points such that it is easy to connect the Write

Protect (WP) pin to a GND pin.

Figure 102 EEPROM Circuitry

EEPROM layout can be made as shown in Figure 103.

https://octavosystems.com/forums/topic/osd3358-boot/#post-4733
https://octavosystems.com/forums/topic/issues-booting-custom-board/#post-4608

119
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 103 EEPROM Layout

120

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

15 Bringing Up a Custom Bare-Bones Linux PCB

15.1 Introduction

In this article, we will finalize the Lesson 2 board design and bring up the

manufactured printed circuit board (PCB). This will allow us to explore new

applications with our completed design and use the completed design as a starting

point for future application specific designs.

The software operating system needed for the projects we will be running on the

board is based on Linux. Because the OSD3358 is based on the Sitara® AM335x ARM®

Cortex® A8 processor from TI, there are many Linux distributions available. The one

we will be using is the Linux image from BeagleBoard.org ®. This Linux image is

based on the Debian distribution of Linux and is robust and supported by a strong

open source community. The BeagleBoard.org® Foundation is a US-based non-profit

existing to provide education in and collaboration around the design and use of open-

source software and hardware in embedded computing.

15.2 Finalizing the Lesson 2 Design

In this design, we have added USB ports and non-volatile storage. Besides the need to

clean up the silkscreen on the board to fully document the design on the PCB, it is

also useful to add some user defined LEDs that can be used to monitor the health of

the PCB during operation.

15.2.1 Adding LEDs

During operation, it is important that a design provide feedback to a user so that they

can understand if there are any issues with the operating state. One convenient way

to provide feedback is with LEDs. Also, Linux provides an easy method, through the

device tree, to connect LEDs to system events, such as CPU and memory activity.

By default, the Linux image from BeagleBoard.org ® or RED Linux image supports 4

user-defined (USR) LEDs. These LEDs must be connected to four GPIO pins as defined

in the device tree in order to have the indicated functionality. The GPIOs

corresponding to user LEDs and their default operation is summarized in Table 5.

Table 5 USR LED functionality

LED AM335x GPIO Signal Function
USR0 GPMC_A05 Blinks in heartbeat pattern

USR1 GPMC_A06 Blinks during SD Card activity

USR2 GPMC_A07 Blinks during CPU activity

https://beagleboard.org/latest-images
https://beagleboard.org/about

121
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

USR3 GPMC_A08 Blinks during eMMC activity

You can see the mapping of these pins to their respective system function in the Linux

device tree. The snippet of the device tree used trigger LEDs is shown in Figure 104.

Figure 104 BeagleBoard.org or RED Linux Device Tree snippet showing USR LED nodes

In the above code snippet, which can be found in dtb-rebuilder,

• pinctrl parameters are used to setup pin multiplexing for LEDs. You can find

more information at

https://www.kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pi

nctrl-bindings.txt.

• compatible property is used to bind the gpio-leds driver to the LEDs. See

https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-

gpio.txt.

• label property is used to uniquely identify the LED.

• gpios property is used to assign a particular GPIO for the LED and also define

its active state.

https://github.com/RobertCNelson/dtb-rebuilder/blob/4.4-ti/src/arm/am335x-bone-common.dtsi
https://www.kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-gpio.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/leds-gpio.txt

122

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

• linux, default-trigger is used to set a system event as trigger to the LED. See

https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/com

mon.txt to know more about available triggers and their assignment.

• default-state determines the initial state of the LED.

To find more information about modifying the device tree for your custom board,

please refer to our forthcoming articles on Linux.

The LED circuit can be built and added to Lesson 2 design as shown in Figure 105 and

Figure 106.

Figure 105 USR LED circuit

https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/common.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/leds/common.txt

123
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 106 OSD335x USR LED connections

The LED circuit layout can be built as shown in Figure 107.

124

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 107 USR LED Layout

15.2.2 Finalizing the silkscreen

Once the design is complete, the silk screen should be finalized to fully document the

PCB. The steps needed to finalize silkscreen are discussed as part of the Finalizing

the silkscreen Section of OSD335x Peripheral Circuitry Article from Lesson 1.

15.2.3 Expected outcome

Now that we have completed the Lesson 2 design, the completed schematic should

look similar to Figure 108 and completed layout should look similar to Figure 109,

Figure 110 and Figure 111.

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/peripheral-circuitry/

125
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 108 Lesson 2 complete schematic

126

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 109 Lesson 2 complete layout with pour outlines

127
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 110 Lesson 2 complete layout with pour

128

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 111 Lesson 2 complete layout with all layers turned on

15.3 PCB Manufacturing

To have the Lesson 2 design manufactured, please follow the procedure discussed in

the PCB order process Section of OSD335x Peripheral Circuitry Article from Lesson 1.

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/peripheral-circuitry/

129
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

15.4 Bringing up the PCB

Once you have the manufactured Lesson 2 design, please follow the procedure

discussed in the Basic board bring-up Section of OSD335x Bare Minimum Board Boot

Process Article from Lesson 1.

15.5 Booting Linux

The Lesson 2 design can boot any of the Linux images from BeagleBoard.org ® or the

RED Linux image. However, the system functionality will be slightly different since

the Lesson 2 design does not have the same peripheral set as other reference designs.

The getting started page of BeagleBoard.org ® will help you flash the uSD card, eMMC

and install necessary drivers. Although these instructions are intended for one of the

BeagleBoard.org ® development boards, they can also be used to get started with the

Linux image from BeagleBoard.org ® or the RED Linux image on the Lesson 2 design.

One thing to be careful about when using the above images: the U-Boot bootloader

within the images looks for a board id in an EEPROM attached to the I2C0 bus. The

board id is used by U-Boot to identify the board so that the on-board hardware

components can be initialized properly before booting the Linux kernel. If suitable

information is not found in the EEPROM (e.g. the EEPROM is blank or has not yet been

programmed) or if EEPROM is absent on the board, then U-Boot will not boot Linux

kernel. Unfortunately, this check occurs before the serial console has been initialized

so no boot messages will be displayed on the UART0 serial console making the board

look like it is not working properly. There are 2 ways to get around the board id

check:

1) Bypass the board id checks in U-Boot boot by modifying and rebuilding the U-

Boot bootloader from its source. See our forum posts "Issues Booting Custom

Board" (post #4608) and (post #4582) for more information.

2) Use Robert Nelson’s patch to modify U-Boot that will boot and allow you to

program the EEPROM. This will also require rebuilding U-Boot from its source.

See forum post "OSD3358 Boot" (post #4733) for detailed procedure.

15.6 Demo Application

Once Linux is running, we can now explore different applications on the Lesson 2

design. For example, we can use a Motion Click to detect motion and alert a user by

flashing some LEDs. The Motion Click, an add-on board from MikroElektronica, is built

around a pyroelectric sensor that pulls the interrupt pin high whenever it senses

motion of objects that emit infrared, such as living bodies. The demo app consists of

a simple bash script which polls the status of the interrupt pin of Motion Click when it

is plugged into the peripheral header and blinks LEDs D4 and D5 whenever motion is

detected. The demo app can be downloaded here.

https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/boot-process/
https://octavosystems.com/app_notes/osd335x-design-tutorial/bare-minimum-boot/boot-process/
http://beagleboard.org/latest-images
https://octavosystems.com/files/osd3358-sm-red-linux-image/
http://beagleboard.org/getting-started
https://octavosystems.com/forums/topic/issues-booting-custom-board/#post-4608
https://octavosystems.com/forums/topic/issues-booting-custom-board/#post-4608
https://octavosystems.com/forums/topic/issues-booting-custom-board/#post-4582
https://octavosystems.com/forums/topic/osd3358-boot/#post-4733
https://www.mikroe.com/motion-click
https://octavosystems.com/files/osd335x-reference-design-lesson-2-demo-app/

130

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

To run the demo app on the Lesson 2 board:

a. Copy the demo app to the uSD card or eMMC of the Lesson 2 board.

b. Make the demo app file executable by using the command:

chmod +x DemoApp_L2.sh

c. Run the demo app with the command:

sh ./DemoApp_L2.sh

(1) dtb-rebuilder is developed and maintained by Robert C Nelson

https://github.com/RobertCNelson/dtb-rebuilder/blob/4.4-ti/src/arm/am335x-bone-common.dtsi

131
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

16 Linux Boot Process

16.1 Introduction

Linux is a free and open-source operating system created by Linus Torvalds. Due to its

openness, flexibility, and tremendous community support and development, Linux has

become the operating system of choice for most embedded systems like industrial

control systems, robotics applications and IoT devices. There are many Linux

distributions, such as Debian and Ubuntu, that pull together utilities, libraries and

application software around the Linux kernel to provide a development and execution

environment for custom application software.

This article will focus on understanding the boot process of a OSD3358-SM-RED Debian

Linux image running on OSD335x.

16.2 OSD335x Debian Linux Boot Process

Like many processors, the Texas Instruments AM335x processor inside the OSD335x

Family of devices uses a multi-stage boot process to load and run the operating

system. This is due to factors such as flexibility in the boot peripherals, boot speed,

processor memory limitations, etc. The four boot stages for a standard Linux boot are

shown in Figure 112.

Figure 112 Linux Boot stages on OSD335x

https://octavosystems.com/files/osd3358-sm-red-linux-image/

132

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

16.2.1 Stage 1: ROM Bootloader

The AM335x contains a section of Read-Only Memory (ROM) that implements the first

stage bootloader. The ROM Bootloader code is the first piece of code that is executed

by the processor when it is released from reset. The ROM is a hard coded piece of

software and cannot be changed for a given device but may change between revisions

of the processor. The ROM bootloader has the following responsibilities:

• Initial configuration of the device and initialization of boot peripherals

o Memory section setup (stack, heap, etc.)

o Configuration of Watchdog Timer 1 (set to three minutes)

o Configuration of PLL and System Clocks

• Load and begin execution of the next stage bootloader

o Check boot peripherals for next stage bootloader (SPL/MLO)

o Load bootloader from peripheral into the internal RAM of the AM335x and

begin execution of the code

The AM335x defines sixteen (16) boot configuration pins (SYSBOOT[15:0]) that are set

by the hardware design to inform the bootloaders about hardware system parameters.

These parameters include input clock frequency, Ethernet or flash memory

configuration (if applicable), output clock configuration, and boot sequence. The ROM

bootloader uses the boot sequence parameter to search a given set of boot

peripherals for the next stage bootloader. The value of the SYSBOOT pins can be read

by the processor via the control_status register (address 0x44E1_0040).

For example, in the Lesson 2 design, by default we set SYSBOOT[15:0] = 0x4018 which

sets a boot sequence value of 11000b. From the SYSBOOT Configuration Pins section

(Table 26-7) in the AM335x Technical Reference Manual (TRM), this means that the ROM

bootloader will search SPI0, MMC0, USB0 and UART0 for the next stage bootloader, in

that order. If a properly formatted bootloader is not found, the ROM bootloader will

continue to poll the last peripheral, i.e. UART0, until a bootloader is found, or the

processor is reset. In the case of UART0, the polling of the bootloader can be

recognized by the processor outputting a series of “C” characters on UART0.

It is important to set the boot sequence properly since only the peripherals defined by

the boot sequence will be checked by the ROM bootloader for the next stage

bootloader. Similarly, it is important to make sure the boot sequence order is correct

if multiple peripherals will be used to boot, such as an SD Card and eMMC.

http://www.ti.com/lit/pdf/spruh73

133
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

16.2.2 Stage 2: Secondary Program Loader (SPL)

The second stage bootloader is known as the Secondary Program Loader (SPL).

Previously, it was also known as the MMC Loader (MLO) but that term has been

deprecated but may still appear in documentation. The SPL must operate entirely

within the internal memory of the AM335x processor since only the boot peripherals

have been initialized by the ROM bootloader. In the case of bare-metal applications

that are small enough to fit within the internal memory, the boot process can end at

this stage and the application can run. However, this is not the case for Linux.

To boot Linux, one of the most common methods is to use U-Boot (Universal Boot

Loader) to perform all of the steps necessary to load and boot the Linux kernel. U-

Boot provides a feature rich environment to accomplish its tasks. However, the

feature rich U-Boot environment requires more memory than is available in the

AM335x internal memory. Therefore, U-Boot is split into a first-stage and second-

stage bootloader. The first stage of U-Boot is small and can be used as the SPL for the

OSD335x Linux boot process. This split is done automatically during the build process

for U-Boot, but the pieces are loaded into separate parts of the boot image.

The main function of the stripped-down SPL version of U-Boot is to perform hardware

initialization of the DDR3 memory within the OSD335x, load the larger, fully featured

version of U-Boot into DDR memory, and begin execution of that code.

16.2.3 Stage 3: U-Boot Bootloader

The third stage of the OSD335x Linux boot process is the second stage of the U-Boot

bootloader. The full-featured version of U-Boot that is being run at this stage is

extremely powerful and includes an interactive shell, environment variables, as well

as command line utilities to initialize and interact with many different peripherals.

These features make U-Boot a very popular bootloader for many embedded devices

running Linux.

Once the U-Boot console has been activated, it is possible to stop the automatic boot

process via a serial terminal and use the command line interface to interact with the

hardware and test its functionality. For example, you are able to interact with I2C or

MMC devices to make sure that they are powered and at the correct address. The U-

Boot console typically uses the UART0 interface. However, there are interesting

projects such as Netconsole that allows the serial terminal to be used over a network

interface.

The main function of the U-Boot bootloader is to load and begin execution of the

Linux kernel. To do this, it will typically look for a uImage file, which is contains both

the Linux kernel and a header that describes the kernel. The uImage file can be found

134

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

in non-volatile memory attached to the processor, such as an eMMC or a microSD

card, or over a network interface via a protocol like TFTP.

The U-Boot environment can be configured by setting environment variables. These

environment variables can be 1) configured during the build of U-Boot; 2) set and

saved during an interactive U-Boot session; or 3) set or overridden from a file called

uEnv.txt which is stored in the /boot directory of the filesystem.

16.2.4 Stage 4: Linux Kernel

In the final stage of boot, the Linux kernel is started which will boot and configure

the Linux operating system. During this part of the boot process, all the necessary

device drivers are loaded and configured so that the system can operate properly.

The Linux kernel is wrapped in a header that describes it and the two together create

the uImage file that is loaded and executed. The header is 64kB and includes

information like the target architecture, the operating system version, kernel size,

checksum to verify the kernel image was loaded correctly, etc. When U-Boot loads

the uImage, it displays the header information on the serial console as shown in

Figure 113.

Figure 113 uImage header info displayed by U-Boot

135
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Once the kernel boots, depending on the loglevel and quiet options that are part of

the cmdline variable in uEnv.txt, various boot messages will appear on the serial

console as drivers and services are loaded. These messages are important debug

resources if there are any issues with hardware or software components of the

system. Eventually, a login prompt will appear, see Figure X, on the serial console.

You can use this to log into the system. This login is important if there are any issues

during boot since it allows access to the system when other methods of interacting

with the system, such as ssh over a network or a graphical user interface, might not

be working properly.

Figure 114 UART0 serial login prompt

At this point, the Linux operating system has completely booted and you are now able

to use it as you would any other Linux operating system to run programs and

applications, communicate with system hardware, etc.

16.2.5 Boot Process Memory Usage

While it is important to understand the different stages of the boot process, it is also

important to understand where each boot stage lives in memory and the different

memory it uses during boot.

Before the device powers up, the boot code lives in one of two places. First, the ROM

Bootloader resides permanently on the AM335x processor and cannot be modified.

Second, all other pieces of the boot image (ie the second and third stage bootloaders,

and the linux kernel and filesystem) are in non-volatile storage (e.g. a microSD card

or eMMC). Once the device powers up, the ROM Bootloader will load the second stage

bootloader, i.e. the SPL, into internal AM335x memory. The SPL will load the third

stage bootloader, i.e. the full featured version of U-Boot, into the DDR memory that

is within the OSD335x device. Finally, the last bootloader stage, i.e. the Linux kernel,

will be pulled into the DDR and executed. At that point, the Linux operating system

will run using all of the resources of the AM335x and the OSD335x as well as

continuing to use the non-volatile storage as the file system. This is shown in Figure

115.

136

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

You can download pre-built Debian Linux images that consist of all necessary pieces to

boot from BeagleBoard.org ® or the RED Linux Image Download.

Figure 115 Boot Process Memory Usage

http://beagleboard.org/latest-images
https://octavosystems.com/files/osd3358-sm-red-linux-image/

137
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

17 Linux Device Tree

17.1 Introduction

Most modern general-purpose computers, like a desktop or laptop, will consist of

several peripherals connected to a main processor through a bus such as PCI, USB,

etc. An operating system, such as Windows or Linux, running on the computer can

discover or learn about the connected peripherals through enumeration. Enumeration

is a process through which the OS can enquire and receive information, such as the

type of the device, the manufacturer, or the device configuration, about all the

devices connected to a given bus. Once the OS gathers information about a device, it

can load the appropriate driver for the device. However, this is not the case when it

comes to most embedded systems.

In embedded systems, many peripherals are connected to the main processor with

busses like I2C, SPI, and UART, which do not support enumeration. Therefore, when

an embedded system uses an operating system, such as Linux, it is necessary to

convey the hardware configuration of the system, i.e. all the information about the

connected peripherals, to the OS in a standard form. The most common way to do this

in Linux is to use a device tree. A device tree is a tree data structure that describes

the hardware configuration of the system to the Linux operating system. During boot,

the Linux kernel will use the information in the device tree to recognize, load

appropriate drivers and manage the hardware devices in the system.

This article will help you get started with Linux device trees by introducing the

structure of device trees, describing some properties of device trees and showing you

how to modify an existing device tree for your custom hardware configuration.

Perk:

Devices which use buses that support enumeration do not need to be included in

the device tree. For example, devices that are connected to a USB Host port do

not need to be included in the device tree, since the USB bus protocol supports

enumeration. Similarly, all devices that are connected to an I2C bus must be

included in the device tree, since the I2C bus protocol does not support

enumeration.

138

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

17.2 Device Tree Structure and Properties

A Linux device tree begins from a root node (i.e. the Tree Root) and will consist of a

level of child nodes and one or more levels of children nodes. Each child node

represents a hardware component of the micro-processor. For example, in the

OSD335x, each child node represents a component of the AM335x processor, such as

the CPU, an I2C peripheral, etc. Each children node represents a sub-component of a

child node or a device attached to the child node. For example, in the OSD335x, the

TPS65217C PMIC is attached to the I2C0 peripheral bus and appears as a children node

under the I2C0 child node. Each node consists of property-value pairs that describe

the hardware of the node. Each child node or children node can have only one parent

and the root node has no parent. A block diagram of a simple device tree structure is

shown in Figure 116.

Figure 116 Block diagram of a simple device tree structure

In the above picture, you can see the parent-child relationship that exists between

the child and children nodes. For example, all CPU cores are grouped as children

nodes under CPU child node. Similarly, all I2C devices on a given I2C bus are grouped

as children under that I2C node.

Perk:

As mentioned above, a parent-child relationship exists between child and children

nodes. Although it is counter intuitive to call parent node a child node and child

node a children node, this was done to match the terminology used in the official

device tree documentation.

139
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

To express these relationships, the Linux device tree has a specific syntax and

structure that should be followed to ensure a device tree works as intended. Let’s

look at a simple device tree template (Figure 117) that shows the generic syntax of

the root node, child nodes, children nodes and property-value pairs.

Figure 117 Simple Device Tree Template ( Thomas Petazzoni, Device Tree for Dummies)

In the above figure:

• node@0 and node@1 are child nodes.

• child-node@0 and child-node@1 are children nodes of their respective child

nodes.

• node1 is an easy to remember label of node@1.

• a-string-property, a-string-list-property etc., are properties that are used to

describe the child and children nodes.

• <&node1> is a phandle (i.e. a reference to node1 from node@0).

The official Device Tree Specification can be found here (this article will refer to

information from version v0.2). A more detailed explanation of the device tree

structure and basic concepts is available on the Device Tree Usage webpage. Please

make sure you are familiar with these two documents before proceeding.

https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.2
https://elinux.org/Device_Tree_Usage

140

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Now that the structure and the syntax of a device tree is clearer, the next question

is: what property-value pairs should be used to describe a particular component and

where can that information be found? The answer can be found in Device Tree

Bindings. The properties that are necessary to describe a particular component in the

device tree depends on the requirements of the Linux driver, or kernel module, for

that component. All the required properties must be supplied to ensure that the Linux

kernel recognizes the component properly and loads the appropriate drivers for that

component. The Device Tree Bindings for a particular hardware device will give you

this information. Therefore, it is essential to find the right Device Tree Bindings

information for your component. More supporting documentation about device tree

bindings can be found on the Device Tree Reference webpage.

As an example of Device Tree Bindings, the Lesson 2 board has a peripheral header

that supports MikroElektronika Click Boards. To use a MPU 9DOF Click that has MPU-

9150 9-axis motion tracking component, the appropriate information must be added

to the device tree. This Click communicates with the host using I2C and has a single

interrupt line to the processor. The device tree bindings for this component can be

found here. Based on this, the following entry would be added to the device tree as a

children node under the appropriate I2C child node:

mpu9150@69 {

 compatible = "invensense,mpu9150";

 reg = <0x69> ;

 interrupt-parent = <&gpio0> ;

 interrupts = <23 1> ;

};

The unit address (i.e. the @69 after the mpu9150) and reg values are both 69
because the MPU 9DOF Click’s address on the I2C bus is 0x69. The INT pin of the
peripheral header, which is used for interrupts from the MPU 9DOF Click, is connected
to the GPMC_AD9 pin of the OSD335x (which is the GPMC_AD9 pin of AM335x, see the
Lesson 2 board schematics for more information). The GPMC_AD9 pin is also available
to the system as bit 23 in GPIO bank 0 (see the Pin Attributes section of AM335x
datasheet). Hence, the interrupt-parent for this device is a phandle for gpio0 node
and the first value of interrupts property is 23. The second value of the interrupts
property is used to describe the behavior of the interrupt, i.e. the trigger type and
level, which can be found in the AM335x TRM. See here for more information about
device tree interrupts.

The device tree bindings for all the hardware components must be consolidated to
form a complete device tree so that the system can function properly. While this may
seem like a daunting task, device trees are seldom built from scratch. The next
section will discuss modification and reuse of existing device trees.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/Documentation/devicetree/bindings
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/Documentation/devicetree/bindings
https://elinux.org/Device_Tree_Reference#Bindings
https://www.mikroe.com/click
https://www.mikroe.com/mpu-9dof-click
https://www.kernel.org/doc/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt
https://kernel.org/doc/Documentation/devicetree/bindings/interrupt-controller/interrupts.txt

141
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

17.3 Modifying an Existing Device Tree

For an embedded Linux system, a device tree is generally a complex data structure

requiring several hundred nodes to describe the entire system hardware architecture.

Creating a device tree from scratch and validating it can be a daunting and time-

consuming task. Therefore, you should look to reuse device tree include files and

modify an existing device tree to meet your requirements.

A device tree for the Lesson 2 board can be created by modifying the published device

tree from the OSD3358-SM RED board. You can download the device tree files here.

The OSD3358-SM RED board has several components that do not exist on the Lesson 2

board. Those components will need to be removed from the device tree to make it

suitable for the Lesson 2 board. However, before doing this, you need to understand

how the OSD3358-SM RED board device tree is structured.

The device tree consists of 2 files:

• osd335x-sm.dtsi – This is a device tree include file that describes all the

hardware that is present in the OSD335x-SM System-in-Package (SiP) device.

• osd3358-bsm-refdesign.dts – This is the main device tree file that includes the

previous file and adds nodes corresponding to the hardware that is specific to the

OSD3358-SM-RED board.

Dividing the device tree into separate files helps with code reusability. Since the

internal hardware of the OSD335x-SM remains the same irrespective of where it’s

used, the device tree corresponding to it can be put into an include file (osd335x-

sm.dtsi). Then, this file can be used in many device trees that utilize the OSD335x-

SM.

When using device tree include files, it is important to understand the status of each

node (i.e. after loading the include file, is a given node in an okay or a disabled

state). The main device tree file (osd3358-bsm-refdesign.dts in this case) can then

enabled or disable nodes depending on the system hardware. The nodes with the

preceding ampersand () in the main device tree file are referencing nodes that are

already declared in osd335x-sm.dtsi.

At this point, the OSD3358-SM-RED board’s device tree can be modified to match the

hardware on Lesson 2 board. The nodes and node references that do not correspond

to the Lesson 2 board can be removed in osd3358-bsm-refdesign.dts. Figure 118 lists

all the nodes that are present in this file. The nodes that are marked with X should be

removed.

https://octavosystems.com/octavo_products/osd3358-sm-red/
https://github.com/octavosystems/OSD335x-Device-Tree

142

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 118 osd3358-bsm-refdesign.dts before modifications

143
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

After the modifications, the osd3358-bsm-refdesign.dts will look like Figure 119.

Since it now reflects the Lesson 2 hardware, the file can be renamed to osd335x-

lesson2.dts.

Figure 119 osd3358-bsm-refdesign.dts after modifications to reflect Lesson 2 hardware

You can directly download the osd335x-lesson2.dts device tree file for the Lesson 2

board here. The .dts device tree source files are human readable and can be viewed

in your favorite text editor. Next, this source file will be converted to a Device Tree

Blob or .dtb file, i.e. a binary file that is smaller and easier to parse by the Linux

kernel. For the OSD335x Family of devices, Robert Nelson’s Device Tree Rebuilder

can be used to compile the device tree source. You can download it here.

https://octavosystems.com/files/lesson-2-device-tree-files/
https://github.com/RobertCNelson/dtb-rebuilder

144

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

The steps to compile and use the new device tree on the Lesson 2 board are as

follows:

1. Download the latest OSD3359-SM RED Debian image and flash a microSD card

with it. Boot the Lesson 2 board from the microSD card.

2. Download and copy the dtb-rebuilder to your microSD card.

3. Copy the osd335x-lesson2.dts and osd335x-sm.dtsi to dtb-rebuilder/src/arm

directory.

4. Use the make command to build the files.

5. The osd335x-lesson2.dtb file will be in the dtb-rebuilder/src/arm directory

once the build process is complete.

6. Move the osd335x-lesson2.dtb file to /boot/dtbs/<kernel version>/ directory

to make it available to the Linux Kernel during boot.

7. Configure the boot configuration file (uEnv.txt) to use the new device tree:

a. Open the /boot/uEnv.txt configuration file using a text editor. E.g.,

nano /boot/uEnv.txt

b. Comment out the existing dtb variable and add the line dtb=osd335x-

lesson2.dtb as shown in Figure 120. Save the file.

c. Reboot the board using the command: sudo reboot -h now.

The board should now boot using the new device tree.

Figure 120 Setting Kernel Device Tree file in uEnv.txt

https://octavosystems.com/files/osd3358-sm-red-linux-image/

145
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Perk:

To understand what was loaded during the boot process, you can look at the boot

messages on the serial console (by default UART0) during boot or in the system

logs after boot. This can help you debug any boot issues.

Caveat:

If you get time skew warnings while building the device tree, run the touch *

command in the dtb-rebuilder directory and the dtb-rebuilder/src, dtb-

rebuilder/src/arm sub-directories to update the file modification time of all files

to resolve the warning.

If there are any syntax errors in the device tree, the compiler will indicate the line

number where the error was found. You can use this information to track and

resolve the error. The most common error is phandle references to non-existing

nodes. Since some nodes were deleted while modifying the device tree, any

references to the deleted nodes might cause errors. Make sure to delete all

phandle references to the deleted nodes to fix any errors.

146

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

17.4 Pin Multiplexing

The OSD335x family of devices provides access to all 123 signal pins of the AM335x

processor. Each of these signal pins can have up to seven (7) different functions, or

modes, which allows a given peripheral within the AM335x to be multiplexed to

different pins. The pin modes for each pin can be found in the Pin Attributes table of

AM335x datasheet (the OSD335x family uses ZCZ package of AM335x when referring to

pin names / pin functionality). The RESET REL. MODE column of the table shows the

default mode that will be assigned to the pin after the processor is released from

reset. If this mode is not the mode required by system, you will need to add

information to the device tree to set the pin mulitplexing so that the connected

components interface properly with the AM335x processor.

For example, below shows a device tree snippet from the am33xx_pinmux node of the

osd3358-bsm-refdesign.dts file. The pinctrl-single driver is used to set the

appropriate pin configuration (more information about pinctrl-single driver can be

found here). The AM33XX_IOPAD macro (which can be found in the dt-

bindings/pinctrl/omap.h file, which is included by the dt-bindings/pinctrl/am33xx.h

file, which is included by the osd335x-sm.dtsi file) helps configure each pin (more

information about AM33XX_IOPAD macro can be found here).

&am33xx_pinmux {

 user_leds_default: user_leds_default {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x854, PIN_OUTPUT_PULLDOWN | MUX_MODE7)

/*gpmc_a5.gpio1_21 */

 AM33XX_IOPAD(0x858, PIN_OUTPUT_PULLUP | MUX_MODE7)

/*gpmc_a6.gpio1_22 */

 AM33XX_IOPAD(0x85c, PIN_OUTPUT_PULLDOWN | MUX_MODE7)

/*gpmc_a5.gpio1_23 */

 AM33XX_IOPAD(0x860, PIN_OUTPUT_PULLUP | MUX_MODE7)

/*gpmc_a5.gpio1_24 */

 >;

 };

};

You can find the absolute physical address of the pins, which is required for the

macro, in the CONTROL_MODULE REGISTERS table of AM335x TRM. In the table,

each signal pin name is prefixed with conf_. For example, the absolute physical

address of the GPMC_A5 pin, 0x854, is shown in Figure 6.

http://www.ti.com/lit/ds/symlink/am3358.pdf
https://www.kernel.org/doc/Documentation/devicetree/bindings/pinctrl/pinctrl-single.txt
https://patchwork.kernel.org/patch/7608811/

147
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 6 Physical Address of GPMC_A5

In addition, you can also use TI’s PinMux Tool to ensure the pin muxing of your pins do

not conflict with each other (You will need a TI user account to use the tool). You can

watch the TI PinMux Tool getting started video here to learn more about the tool.

http://www.ti.com/tool/PINMUXTOOL
https://www.youtube.com/watch?v=Q8yby_i3N_M

148

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

18 Linux Device Tree Overlay

18.1 Introduction

Since the adoption of the Device Tree standard to describe embedded Linux systems,

there has been one major limitation: the static nature of device trees (please find

more information on Linux device trees here<link to be added to previous article>).

Device trees could not cope with changes in non-discoverable hardware, such as

modifications to pin muxing, during run time. However, most modern embedded

systems support adding and removing non-discoverable hardware during run time. This

made it difficult to define the full hardware configuration statically at boot time in a

device tree. Pantelis Antoniu, an active Linux kernel developer, implemented a

solution to this issue using Device Tree Overlays (DTOs). The idea was to be able to

dynamically insert a fragment of a device tree into a live device tree to update the

hardware configuration of the system. For example, a fragment could change the

status property of a device node from “disabled” to “okay” and then the device

corresponding to that node would be created.

A device tree overlay is a file that consists of one or more device tree fragments that

describe changes to the system hardware. This article will help you become familiar

with device tree overlays by explaining the structure through an example, building a

device tree overlay for the peripheral header of the Lesson 2 board, and then

adapting the generic overlay for an example Click board.

18.2 Understanding Device Tree Overlays

The structure of a device tree overlay is a direct extension of a device tree. First,

let’s understand the structure by looking at the PB-I2C1-MPU-9DOF-CLICK.dts device

tree overlay file. This overlay was written for the MPU 9DOF Click board which can be

attached to the headers of the BeagleBoard.org® PocketBeagle®. Since the

PocketBeagle® uses the OSD335x-SM device (which is very similar to the OSD335x), it

will be easy to leverage this overlay for the Lesson 2 board (The PB-I2C1-MPU-9DOF-

CLICK.dts file is available for download here).

/*

 * Copyright (C) 2017 Robert Nelson <robertcnelson@gmail.com>

 *

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License version 2 as

 * published by the Free Software Foundation.

 */

/dts-v1/;

/plugin/;

#include <dt-bindings/board/am335x-bbw-bbb-base.h>

#include <dt-bindings/gpio/gpio.h>

#include <dt-bindings/pinctrl/am33xx.h>

https://github.com/beagleboard/bb.org-overlays/blob/master/src/arm/PB-I2C1-MPU-9DOF-CLICK.dts

149
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

/ {

 fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 mpu9150_pins: pinmux_mpu9150_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0824, PIN_INPUT | MUX_MODE7)

/* (T10) gpmc_ad9.gpio0[23] INT */

 >;

 };

 };

 };

 fragment@1 {

 target = <&ocp>;

 __overlay__ {

 P2_03_pinmux {

 status = "disabled";

 };

 };

 };

 fragment@2 {

 target = <&i2c1>;

 __overlay__ {

 status = "okay";

 #address-cells = <1>;

 #size-cells = <0>;

 mpu9150@69 {

 compatible = "invensense,mpu9150";

 reg = <0x69>;

 interrupt-parent = <&gpio0>;

 interrupts = <23 1>;

 i2c-gate {

 #address-cells = <1>;

 #size-cells = <0>;

 ax8975@c {

 compatible = "ak,ak8975";

 reg = <0x0c>;

 };

 };

 };

 };

 };

};

The above overlay code consists of three major parts:

150

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

First, the overlay begins with tokens (shown below). The first token indicates the file

version and the second one indicates that this file is a plugin (i.e. an overlay).

/dts-v1/;

/plugin/;

Next, the tokens are followed by include statements. This is where required header
files are included in the overlay to add symbol definitions and macros.

#include <dt-bindings/board/am335x-bbw-bbb-base.h>

#include <dt-bindings/gpio/gpio.h>

#include <dt-bindings/pinctrl/am33xx.h>

Finally, the fragments describe the functional changes to the device tree for the
overlay, starting from the root node (/):

The first fragment of the overlay (fragment@0) is used to set the P2_03 pin of the

PocketBeagle ® (i.e. the GPMC_AD9 pin, bit 23 of the GPIO0 peripheral of the AM335x)

to GPIO input mode. When the MPU 9DOF Click board is connected to the

PocketBeagle ®, the INT pin of the Click connects to the P2_03 pin. Therefore, the

pin must be configured so that the PocketBeagle ® can receive interrupt signals from

the MPU 9DOF Click. To configure the pin, the target property is used to specify the

device tree node that needs to be overlaid. In this case, the am33xx_pinmux node is

specified to alter the pin muxing of the AM335x IO. The properties listed in the

__overlay__ node will be overlaid on the original properties of the target device tree

node.

fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 mpu9150_pins: pinmux_mpu9150_pins {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0824, PIN_INPUT | MUX_MODE7)

/* (T10) gpmc_ad9.gpio0[23] INT */

 >;

 };

 };

 };

The second fragment of the overlay (fragment@1) is then used to disable the current

functionality associated with the P2_03 pin. Currently in the PocketBeagle ® device

tree, the P2_03 pin is configured to use the bone-pinmux-helper driver in the OCP

(On Chip Peripheral) node (see am335x-pocketbeagle.dts). Therefore, the driver must

be disabled to ensure that the P2_03 pin is available to receive interrupts from the

Click board.

https://github.com/beagleboard/linux/blob/4.14/arch/arm/boot/dts/am335x-pocketbeagle.dts

151
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

fragment@1 {

 target = <&ocp>;

 __overlay__ {

 P2_03_pinmux {

 status = "disabled";

 };

 };

 };

};

The third fragment (fragment@2) is used to enable the I2C communication with the

Click board. The Click board communicates over the I2C1 bus. Therefore, the I2C1

interface needs to be enabled by setting the status property of the i2c1 node to

okay. Also, all the required information of the IC on the MPU 9DOF Click board, such

as the manufacturer name, IC name, device address on the I2C bus, etc. must be

supplied in this fragment so the kernel can load the appropriate drivers. The device

tree bindings for MPU-9150 IC on the MPU 9DOF Click can be found here.

fragment@2 {

 target = <&i2c1>;

 __overlay__ {

 status = "okay";

 #address-cells = <1>;

 #size-cells = <0>;

 mpu9150@69 {

 compatible = "invensense,mpu9150";

 reg = <0x69>;

 interrupt-parent = <&gpio0>;

 interrupts = <23 1>;

 i2c-gate {

 #address-cells = <1>;

 #size-cells = <0>;

 ax8975@c {

 compatible = "ak,ak8975";

 reg = <0x0c>;

 };

 };

 };

 };

 };

https://github.com/OpenChannelSSD/linux/blob/master/Documentation/devicetree/bindings/iio/imu/inv_mpu6050.txt

152

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

18.3 Generic Device Tree Overlay for the Peripheral Header

The Lesson 2 board has a peripheral header that supports removable Click boards.

Similar to the device tree overlay in the previous section, a generic device tree

overlay (osd335x_L2_generic.dts) can be built for the Lesson 2 board’s peripheral

header as shown below (The overlay can also be downloaded here).

The overlay has three parts like the previous example, however, there are more

fragments to enable the different peripherals used by the header. The first fragment

is used to configure the pin muxing for all the interfaces on the peripheral header

such as SPIO0, UART0, I2C1 and GPIO pins. The second, third and fourth fragments

enable the I2C1, SPI0 and UART0 interfaces, respectively, and provide an outline to

add device tree binding information corresponding to the type of click board that you

will use.

/*

 * Copyright (C) 2017 2017 Octavo Systems - http://www.octavosystems.com/

 *

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License version 2 as

 * published by the Free Software Foundation.

 */

/dts-v1/;

/plugin/;

#include <dt-bindings/board/am335x-bbw-bbb-base.h>

#include <dt-bindings/gpio/gpio.h>

#include <dt-bindings/pinctrl/am33xx.h>

/ {

fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 pwm_pins: pinmux_pwm {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0964, PIN_OUTPUT | MUX_MODE0) /*

(C18) ECAP0_IN_PWM0_OUT */

Perk:

The device tree overlay we’re building in this section is intended to be overlaid on

the osd335x-lesson2.dts device tree which we built as part of the Linux Device

Tree article. osd335x-lesson2.dts does not use bone-pinmux-helper driver.

Hence, there is no need to disable the pinmux driver as in the example from the

previous section.

https://octavosystems.com/files/lesson-2-device-tree-files/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/

153
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

 >;

 };

 int_n_rst_pins: pinmux_int_rst {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0824, PIN_INPUT | MUX_MODE7) /*

(T10) gpmc_ad9 MBUS_INT */

 AM33XX_IOPAD(0x0820, PIN_OUTPUT | MUX_MODE7) /*

(U10) gpmc_ad8 MBUS_RST */

 >;

 };

 i2c1_pins: pinmux_i2c1 {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0968, PIN_INPUT_PULLUP | MUX_MODE3)

/* (E18) I2C1_SDA/UART0_CTSN */

 AM33XX_IOPAD(0x096C, PIN_INPUT_PULLUP | MUX_MODE3)

/* (E17) I2C1_SCL/UART0_RTSN */

 >;

 };

 spi0_pins: pinmux_spi0 {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0950, PIN_INPUT | MUX_MODE0) /*

(A17) spi0_sclk.spi0_sclk */

 AM33XX_IOPAD(0x0954, PIN_INPUT | MUX_MODE0) /*

(B17) spi0_d0.spi0_d0 */

 AM33XX_IOPAD(0x0958, PIN_INPUT | MUX_MODE0) /*

(B16) spi0_d1.spi0_d1 */

 AM33XX_IOPAD(0x095c, PIN_INPUT | MUX_MODE0) /*

(A16) spi0_cs0.spi0_cs0 */

 >;

 };

 };

};

fragment@1 {

 target = <&i2c1>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&i2c1_pins>;

 /* Add device tree bindings

 * for your I2C1 device here.

 *

 */

 };

154

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

};

fragment@2 {

 target = <&spi0>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&spi0_pins>;

 /* Add device tree bindings

 * for your SPI device here.

 *

 */

 };

};

fragment@3 {

 target = <&uart0>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins>;

 /* Add device tree bindings

 * for your UART device here.

 *

 */

 };

};

};

18.4 Adapting the Generic Device Tree Overlay for a Specific Click Board
When you decide to use a specific Click board with the Lesson 2 board, it is straight-

forward to modify the generic device tree overlay created in the previous section,

versus writing one from scratch, in order to support the Click board. Taking the MPU

9DOF Click example from Section 18.2, you would only need to add the MPU9150

device tree binding information under fragment@1 since MPU 9DOF Click uses the I2C

bus for communication. The new device tree overlay (osd335x_L2_generic_i2c1.dts)

would look like this (content that is different from generic DTO is highlighted):

/*

 * Copyright (C) 2017 Octavo Systems - http://www.octavosystems.com/

 *

155
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

 * This program is free software; you can redistribute it and/or modify

 * it under the terms of the GNU General Public License version 2 as

 * published by the Free Software Foundation.

 */

/dts-v1/;

/plugin/;

#include <dt-bindings/board/am335x-bbw-bbb-base.h>

#include <dt-bindings/gpio/gpio.h>

#include <dt-bindings/pinctrl/am33xx.h>

/ {

fragment@0 {

 target = <&am33xx_pinmux>;

 __overlay__ {

 pwm_pins: pinmux_pwm {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0964, PIN_OUTPUT | MUX_MODE0) /*

(C18) ECAP0_IN_PWM0_OUT */

 >;

 };

 int_n_rst_pins: pinmux_int_rst {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0824, PIN_INPUT | MUX_MODE7) /*

(T10) gpmc_ad9 MBUS_INT */

 AM33XX_IOPAD(0x0820, PIN_OUTPUT | MUX_MODE7) /*

(U10) gpmc_ad8 MBUS_RST */

 >;

 };

 i2c1_pins: pinmux_i2c1 {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0968, PIN_INPUT_PULLUP | MUX_MODE3)

/* (E18) I2C1_SDA/UART0_CTSN */

 AM33XX_IOPAD(0x096C, PIN_INPUT_PULLUP | MUX_MODE3)

/* (E17) I2C1_SCL/UART0_RTSN */

 >;

 };

 spi0_pins: pinmux_spi0 {

 pinctrl-single,pins = <

 AM33XX_IOPAD(0x0950, PIN_INPUT | MUX_MODE0) /*

(A17) spi0_sclk.spi0_sclk */

 AM33XX_IOPAD(0x0954, PIN_INPUT | MUX_MODE0) /*

(B17) spi0_d0.spi0_d0 */

 AM33XX_IOPAD(0x0958, PIN_INPUT | MUX_MODE0) /*

(B16) spi0_d1.spi0_d1 */

 AM33XX_IOPAD(0x095c, PIN_INPUT | MUX_MODE0) /*

(A16) spi0_cs0.spi0_cs0 */

 >;

156

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

 };

 };

};

fragment@1 {

 target = <&i2c1>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&i2c1_pins>;

 #address-cells = <1>;

 #size-cells = <0>;

 mpu9150@69 {

 compatible = "invensense,mpu9150";

 reg = <0x69>;

 interrupt-parent = <&gpio0>;

 interrupts = <23 1>;

 i2c-gate {

 #address-cells = <1>;

 #size-cells = <0>;

 ax8975@c {

 compatible = "ak,ak8975";

 reg = <0x0c>;

 };

 };

 };

 };

};

fragment@2 {

 target = <&spi0>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&spi0_pins>;

 /* Add device tree bindings

 * for your SPI device here.

 *

 */

 };

};

157
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

fragment@3 {

 target = <&uart0>;

 __overlay__ {

 status = "okay";

 pinctrl-names = "default";

 pinctrl-0 = <&uart0_pins>;

 /* Add device tree bindings

 * for your UART device here.

 *

 */

 };

};

};

You can also directly download the osd335x_L2_generic_i2c1.dts device tree

overlay file here.

18.5 Building and using a Device Tree Overlay

The process to compile a device tree overlay is similar to the process to compile a

device tree as discussed in Section 1.3 of Linux Device Tree article. For the OSD335x

Family of devices, Robert Nelson’s Device Tree Rebuilder can be used to build the

DTO. You can download it here. The steps to build the DTO are as follows:

a. Copy the osd335x_L2_generic_i2c1.dts file to the dtb-rebuilder/src/arm/

directory.

b. Build the file using make command.

c. Once the build process completes, the osd335x_L2_generic_i2c1.dtb file will

be available in the dtb-rebuilder/src/arm/ directory. Change the extension of

the file to .dtbo (i.e., osd335x_L2_generic_i2c1.dtbo) to make sure the linux

kernel recognizes it as an overlay.

d. Copy the osd335x_L2_generic_i2c1.dtbo file to the /lib/firmware directory

(You will have to run this command as root)

e. Open the uEnv.txt file in the /boot directory using your favorite text editor

and set custom_cape = osd335x_L2_generic_i2c1.dtbo as shown in Figure . Save

and close the file.

https://octavosystems.com/files/lesson-2-device-tree-files/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://github.com/RobertCNelson/dtb-rebuilder

158

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 1 Setting Device Tree Overlay

f. Reboot the board. If you monitor the boot messages on the UART0 serial

console, it will display the name of the device tree and device tree overlays

that were loaded during boot-up as shown in Figure 121.

159
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

Figure 121 Serial Console Boot Messages

We can now login to Debian (default username = debian, password = temppwd).

160

OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

18.6 Checking if the Device Tree Overlay works as intended

If the new DTO works as intended, the Linux kernel should recognize the MPU 9DOF

Click and load appropriate drivers. From the command line, we can check if

appropriate driver has been loaded for the IC on the MPU 9DOF by listing the i2c bus

drivers (as shown in Figure 122) using the command:

ls /sys/bus/i2c/drivers

Figure 122 Checking if driver for 9DOF Click was automatically loaded

If the Invensense MPU6050 I2C driver appears, you know that the device was properly

configured and the correct driver was loaded. Also, given a kernel driver was loaded

for MPU 9DOF click, we should see UU (Unit Unavailable) on the I2C1 bus at address

0x69 when the i2cdetect command is used to scan the I2C1 bus for devices as shown

in Figure 123. When a kernel driver manages a device, it will not allow i2cdetect to

probe the device. Therefore, you will see UU when scanned versus 69, if the correct

driver was not loaded.

Figure 123 Detecting Click board on I2C bus

Finally, we can check if the MPU 9DOF Click appears as an IIO (Industrial IO) device by

searching for IIO devices in IIO devices directory as shown in Figure 124.

Figure 124 Checking if MPU 9DOF IC is recognized

161
OSD335x Tutorial Series
Rev.4 7/7/2018

Octavo Systems LLC
Copyright 2017 - 2018

If all the above checks succeed, the device is working properly and you can directly

access the accelerometer, compass and other values from the MPU 9DOF Click using

Sysfs (more on Sysfs here). Most of the readable registers of the MPU 9DOF Click are

available as files under the IIO device directory for the Click (iio:device1, in the

picture below. However, the device number maybe different in your system) as shown

in Figure 125.

Figure 125 Reading MPU 9DOF files and output values using Sysfs

For any questions or concerns, you can reach us at:

https://octavosystems.com/forums/

http://www.kilobaser.com/blog/2014-07-15-beaglebone-black-gpios
https://octavosystems.com/forums/

