Dual 1-of-4 Decoder/ Demultiplexer # **High-Performance Silicon-Gate CMOS** The MC74HC139A is identical in pinout to the LS139. The device inputs are compatible with standard CMOS outputs; with pull-up resistors, they are compatible with LSTTL outputs. This device consists of two independent 1-of-4 decoders, each of which decodes a two-bit Address to one-of-four active-low outputs. Active-low Selects are provided to facilitate the demultiplexing and cascading functions. The demultiplexing function is accomplished by using the Address inputs to select the desired device output, and utilizing the Select as a data input. #### **Features** - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS and TTL - Operating Voltage Range: 2.0 to 6.0 V - Low Input Current: 1.0 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance with the Requirements Defined by JEDEC Standard No. 7 A - Chip Complexity: 100 FETs or 25 Equivalent Gates - These Devices are Pb-Free, Halogen Free and are RoHS Compliant #### ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS PDIP-16 N SUFFIX CASE 648 SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F SOEIAJ-16 F SUFFIX CASE 966 A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G or ■ = Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Figure 1. Pin Assignment Figure 2. Logic Diagram #### **FUNCTION TABLE** | Inputs | | | | Out | puts | | |--------|----|----|----|-----|------|-----------| | Select | A1 | A0 | Y0 | Y1 | Y2 | Y3 | | Н | Х | Χ | Н | Н | Н | I | | L | L | L | L | Н | Н | Н | | L | L | Н | Н | L | Н | Н | | L | Н | L | Н | Н | L | Н | | L | Н | Н | Н | Н | Н | L | X = don't care #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|------------------------|-----------------------| | MC74HC139ANG | PDIP-16
(Pb-Free) | 2000 Units / Box | | MC74HC139ADG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC74HC139ADR2G | SOIC-16
(Pb-Free) | 2500 Units / Reel | | MC74HC139ADTR2G | TSSOP-16* | 2500 Units / Reel | | MC74HC139AFELG | SOEIAJ-16
(Pb-Free) | 2000 Units / Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}This package is inherently Pb-Free. #### **MAXIMUM RATINGS** | Symbol | Parame | eter | Value | Unit | |----------------------|---|--|------------------------------|------| | V _{CC} | DC Supply Voltage | (Referenced to GND) | -0.5 to +7.0 | V | | V _{IN} | DC Input Voltage | (Referenced to GND) | -1.5 to V _{CC} +1.5 | V | | V _{OUT} | DC Output Voltage | (Referenced to GND) (Note 1) | -0.5 to V_{CC} + 0.5 | V | | I _{IN} | DC Input Current, per Pin | | ±20 | mA | | I _{OUT} | DC Output Current, per Pin | | ±25 | mA | | I _{CC} | DC Supply Current, V _{CC} Pin | | ±50 | mA | | I _{GND} | DC Ground Current per Ground Pin | | ±50 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | T_L | Lead Temperature, 1 mm from Case for 10 |) Seconds | 260 | °C | | TJ | Junction Temperature Under Bias | | + 150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance | PDIP
SOIC
TSSOP | 78
112
148 | °C/W | | P _D | Power Dissipation in Still Air at 85°C | PDIP
SOIC
TSSOP | 750
500
450 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating | Oxygen Index: 30% – 35% | UL 94 V-0 @ 0.125 in | | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4) | > 2000
> 200
> 1000 | V | | I _{LATCHUP} | Latchup Performance Above | V _{CC} and Below GND at 85°C (Note 5) | ±300 | mA | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. - I_O absolute maximum rating must be observed. Tested to EIA/JESD22-A114-A. - 3. Tested to EIA/JESD22-A115-A. - 4. Tested to JESD22-C101-A. - 5. Tested to EIA/JESD78. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Min | Max | Unit | |------------------------------------|--|---|-------------|--------------------|------| | V _{CC} | DC Supply Voltage | (Referenced to GND) | 2.0 | 6.0 | V | | V _{IN} , V _{OUT} | DC Input Voltage, Output Voltage | (Referenced to GND) | 0 | V _{CC} | V | | T _A | Operating Temperature, All Package Types | | - 55 | + 125 | °C | | t _r , t _f | Input Rise and Fall Time
(Figure 3) | V _{CC} = 2.0 V
V _{CC} = 4.5 V
V _{CC} = 6.0 V | 0
0
0 | 1000
500
400 | ns | 6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level. #### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | V _{CC} | Guaran | teed Limi | t | | |-----------------|---|--|-------------------|--------------------|--------------------|--------------------|------| | Symbol | Parameter | Test Conditions | V | −55°C to 25°C | ≤ 85 °C | ≤125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | V_{OUT} = 0.1 V or V_{CC} - 0.1 V $ I_{OUT} \le 20 \mu A$ | 2.0
4.5
6.0 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | 1.5
3.15
4.2 | V | | V _{IL} | Maximum Low-Level Input
Voltage | V_{OUT} = 0.1 V or V_{CC} - 0.1 V $ I_{OUT} \le 20 \mu A$ | 2.0
4.5
6.0 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | 0.5
1.35
1.8 | ٧ | | V _{OH} | Minimum High-Level Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$ I_{OUT} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | ٧ | | | | $V_{IN} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{OUT} \end{vmatrix} \le 4.0 \text{ m/} \\ I_{OUT} \le 5.2 \text{ m/} \end{vmatrix}$ | A 4.5
A 6.0 | 3.98
5.48 | 3.84
5.34 | 3.70
5.20 | | | V _{OL} | Maximum Low-Level Output
Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$ I_{OUT} \le 20 \mu A$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $V_{IN} = V_{IH} \text{ or } V_{IL} \qquad \begin{vmatrix} I_{OUT} \end{vmatrix} \le 4.0 \text{ m/} \\ I_{OUT} \le 5.2 \text{ m/} \end{vmatrix}$ | A 4.5
A 6.0 | 0.26
0.26 | 0.33
0.33 | 0.40
0.40 | | | I _{IN} | Maximum Input Leakage
Current | V _{IN} = V _{CC} or GND | 6.0 | ±0.1 | ±1.0 | ±1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$ | 6.0 | 4 | 40 | 160 | μΑ | # AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns) | | | V _{CC} | Guaran | teed Limi | t | | |--|--|-------------------|-----------------|-----------------|-----------------|------| | Symbol | Parameter | ٧ | −55°C to 25°C | ≤ 85 °C | ≤125°C | Unit | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Select to Output Y (Figures 1 and 3) | 2.0
4.5
6.0 | 115
23
20 | 145
29
25 | 175
35
30 | ns | | t _{PLH} ,
t _{PHL} | Maximum Propagation Delay, Input A to Output Y (Figures 2 and 3) | 2.0
4.5
6.0 | 115
23
20 | 145
29
25 | 175
35
30 | ns | | t _{TLH} ,
t _{THL} | Maximum Output Transition Time, Any Output (Figures 1 and 3) | 2.0
4.5
6.0 | 75
15
13 | 95
19
16 | 110
22
19 | ns | | C _{in} | Maximum Input Capacitance | - | 10 | 10 | 10 | pF | ^{7.} For propagation delays with loads other than 50 pF, and information on typical parametric values, see the ON Semiconductor High–Speed CMOS Data Book (DL129/D). | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|--|---|----| | C_{PD} | Power Dissipation Capacitance (Per Decoder) (Note 8) | 55 | pF | ^{8.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. GND INPUT A Toco INPUT A Toco T Figure 3. Switching Waveform Figure 4. Switching Waveform - VALID - - VALID - ^{*} Includes all probe and jig capacitance Figure 5. Test Circuit #### **PIN DESCRIPTIONS** #### **ADDRESS INPUTS** #### A0_a, A1_a, A0_b, A1_b (Pins 2, 3, 14, 13) Address inputs. These inputs, when the respective 1-of-4 decoder is enabled, determine which of its four active-low outputs is selected. #### **CONTROL INPUTS** #### Select_a, Select_b (Pins 1, 15) Active-low select inputs. For a low level on this input, the outputs for that particular decoder follow the Address inputs. A high level on this input forces all outputs to a high level. #### **OUTPUTS** #### Y0_a - Y3_a, Y0_b - Y3_b (Pins 4 - 7, 12, 11, 10, 9) Active-low outputs. These outputs assume a low level when addressed and the appropriate Select input is active. These outputs remain high when not addressed or the appropriate Select input is inactive. Figure 6. Expanded Logic Diagram (1/2 of Device) #### **PACKAGE DIMENSIONS** PDIP-16 CASE 648-08 **ISSUE T** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | В | 0.250 | 0.270 | 6.35 | 6.85 | | C | 0.145 | 0.175 | 3.69 | 4.44 | | D | 0.015 | 0.021 | 0.39 | 0.53 | | F | 0.040 | 0.70 | 1.02 | 1.77 | | G | 0.100 | BSC | 2.54 | BSC | | Н | 0.050 | BSC | 1.27 BSC | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.110 | 0.130 | 2.80 | 3.30 | | L | 0.295 | 0.305 | 7.50 | 7.74 | | М | 0° | 10 ° | 0 ° | 10 ° | | S | 0.020 | 0.040 | 0.51 | 1.01 | #### **PACKAGE DIMENSIONS** SOIC-16 CASE 751B-05 ISSUE K - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | P | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### **SOLDERING FOOTPRINT** #### **PACKAGE DIMENSIONS** #### TSSOP-16 CASE 948F-01 **ISSUE B** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. - FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K - (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–. | | MILLIMETERS | | INCHES | | |-----|-------------|------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 | BSC | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | BSC | 0.252 BSC | | | М | 0° | 8 ° | 0 ° | 8 ° | ### **SOLDERING FOOTPRINT** #### PACKAGE DIMENSIONS SOEIAJ-16 CASE 966-01 **ISSUE A** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI DIMENSIONING AND TOLERANCING PER Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - B. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIMETERS | | INC | HES | |----------------|-------------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | C | 0.10 | 0.20 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 BSC | | 0.050 | BSC | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10 ° | | Q_1 | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 0.78 | | 0.031 | ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) and the series are injected to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative