4-Differential Channel 1:2 Mux/Demux Switch for PCI Express Gen3 The NCN3411 is a 4–Channel differential SPDT switch designed to route PCI Express Gen3 signals. When used in a PCI Express application, the switch can handle up to two PCIe lanes. Due to the ultra–low ON–state capacitance (2 pF typ) and resistance (7.5 Ω typ), these switches are ideal for switching high frequency data signals up to a signal bit rate of 8 Gbps. This switch pinout is designed to be used in BTX form factor desktop PCs and is available in a space–saving 3.5 x 9 x 0.75 mm WQFN42 package. #### **Features** - \bullet V_{DD} Power Supply from 1.5 V to 2.0 V - 4 Differential Channels 2:1 MUX/DEMUX - Compatible with PCIe 3.0 - Data Rate: Supports 8 Gbps - Low Crosstalk -30 dB @ 4 GHz - Low Bit-to-Bit Skew: 5 ps - Low R_{ON} Resistance: 13 Ω max - Low Con Capacitance: 2 pF - Low Supply Current: 200 μA - Off Isolation: -20 dB @ 4 GHz - Space Saving Small WQFN-42 Package - This is a Pb-Free Device #### **Typical Applications** - Notebook Computer - Desktop computer - Server/Storage Area Network Figure 1. Application Schematic ## ON Semiconductor® http://onsemi.com #### MARKING DIAGRAM NCN3411 AWLYYWWG #### WQFN42 CASE 510AP XXXXX = Specific Device Code A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|---------------------|-----------------------| | NCN3411MTTWG | WQFN42
(Pb-Free) | 2000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Figure 2. NCN3411 Functional Block Diagram (Top View) ### **TRUTH TABLE** | Function | SEL | |----------------------------------|-----| | A _N to B _N | L | | A _N to C _N | Н | Figure 3. Pin Description (Top View) ## PIN FUNCTION AND DESCRIPTION | Pin | Pin Name | Description | |-------------------------------------|------------|---| | 2
3 | A0+
A0- | Signal I/0, Channel 0, Port A | | 6
7 | A1+
A1- | Signal I/0, Channel 1, Port A | | 11
12 | A2+
A2- | Signal I/0, Channel 2, Port A | | 15
16 | A3+
A3- | Signal I/0, Channel 3, Port A | | 38
37 | B0+
B0- | Signal I/0, Channel 0, Port B | | 36
35 | B1+
B1- | Signal I/0, Channel 1, Port B | | 29
28 | B2+
B2- | Signal I/0, Channel 2, Port B | | 27
26 | B3+
B3- | Signal I/0, Channel 3, Port B | | 34
33 | C0+
C0- | Signal I/0, Channel 0, Port C | | 32
31 | C1+
C1- | Signal I/0, Channel 1, Port C | | 25
24 | C2+
C2- | Signal I/0, Channel 2, Port C | | 23
22 | C3+
C3- | Signal I/0, Channel 3, Port C | | 9 | SEL | Operational Mode Select (When SEL = 0: A \rightarrow B, When SEL = 1: A \rightarrow C) | | 5, 8, 13, 18, 20, 30,
40, 42 | VDD | DC Supply: 1.5 V to 2.0 V | | 1, 4, 10, 14, 17, 19,
21, 39, 41 | GND | Power Ground | | Exposed Pad | - | The exposed pad on the backside of package is internally connected to GND. Externally the pad should also be user-connected to GND. | #### **MAXIMUM RATINGS** | Parameter | Symbol | Rating | Units | |--|------------------|-------------------------|-----------------| | Power Supply Voltage | V _{DD} | -0.5 to 2.5 | V _{DC} | | Input/Output Voltage Range of the Switch (A _N , B _N , C _N) | V _{IS} | −0.5 to V _{DD} | V _{DC} | | Selection Pin Voltages | V _{SEL} | −0.5 to V _{DD} | V _{DC} | | Continuous Current Through One Switch | I _{cc} | ±120 | mA | | Maximum Junction Temperature (Note 1) | TJ | 150 | °C | | Operating Ambient Temperature | T _A | -40 to +85 | °C | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | | Thermal Resistance, Junction-to-Air | $R_{ heta JA}$ | 75 | °C/W | | Latch-up Current (Note 2) | I _{LU} | ±100 | mA | | Human Body Model (HBM) ESD Rating (Note 3) | ESD HBM | 7000 | V | | Machine Model (MM) ESD Rating (Note 3) | ESD MM | 400 | V | | Moisture Sensitivity (Note 4) | MSL | Level 1 | - | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect - device reliability. 1. Power dissipation must be considered to ensure maximum junction temperature (T_J) is not exceeded. 2. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78. 3. This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±7.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±400 V per JEDEC standard: JESD22–A115 for all pins. 4. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020A. ## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, $V_{DD} = 1.5 \text{ V}$ to 2.0 V, GND = 0V) | Symbol | Pins | Parameters | Conditions (Note 5) | Min. | Typ
(Note 6) | Max. | Units | |-----------------------|--|--|---|---------------------------|-----------------|---------------------------|-------| | POWER S | UPPLY | | | | | I | | | V _{DD} | V _{DD} , GND | Supply Voltage Range | With respect to GND | 1.5 | 1.8 | 2.0 | V | | I _{DD} | V _{DD} , GND | Quiescent Supply Current | V_{DD} = 2 V, V_{SEL} = GND or V_{DD} | | 200 | 300 | μА | | DATA SWI | TCH PERFORM | ANCE | | | • | • | | | V _{IS} | A _N , B _N , C _N | Data Input/Output
Voltage Range | | 0 | | 1.2 | V | | R _{ON} | B _N | On Resistance (B _N) | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA}$ | | 7.5 | 13 | Ω | | R _{ON} | C _N | On Resistance (C _N) | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA}$ | | 8.0 | 13 | Ω | | R _{ON(flat)} | B _N | On Resistance Flatness | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA (Note 7)}$ | | 0.1 | 1.24 | Ω | | R _{ON(flat)} | C _N | On Resistance Flatness | $V_{DD} = 1.5 \text{ V}, V_{IS} = 0 \text{ V to } 1.2 \text{ V},$ $I_{IS} = 15 \text{ mA (Note 7)}$ | | 0.1 | 1.24 | Ω | | ΔR_{ON} | B _N | On Resistance
Matching(B _N) | V _{DD} = 1.5 V, V _{IS} = 0 V,
I _{IS} = 15 mA (Note 7) | | | 0.35 | Ω | | ΔR_{ON} | C _N | On Resistance
Matching(C _N) | V _{DD} = 1.5 V, V _{IS} = 0 V,
I _{IS} = 15 mA (Note 7) | | | 0.35 | Ω | | C _{ON} | A_N to B_N , A_N to C_N | On Capacitance | f = 1 MHz, Switch On, Open
Output | | 2.0 | | pF | | C _{OFF} | A_N to B_N , A_N to C_N | Off Capacitance | f = 1 MHz, Switch Off | | 1.5 | | pF | | I _{ON} | A_N to B_N , A_N to C_N | On Leakage Current | V_{DD} = 2 V, V_{AN} = 0 V, 1.2 V, Switch
On to B_N/C_N , B_N/C_N pins are
unconnected | -1 | | +1 | μΑ | | I _{OFF} | A _N to B _N ,
A _N to C _N | Off Leakage Current | $V_{DD} = 2 \text{ V}, V_{AN} = 0 \text{ V}, 1.2 \text{ V}, \text{ Switch}$ Off to B_N/C_N , $V_{BN}/V_{CN} = 1.2 \text{ V}, 0 \text{ V}$ | -1 | | +1 | μΑ | | LOGIC INI | PUT CHARACTE | RISTICS (SEL Pin) | | | | | | | V _{IH} | SEL | Input HIGH Voltage | (Note 7) | 0.65 x
V _{DD} | | V _{DD} | V | | V _{IL} | SEL | Input LOW Voltage | (Note 7) | 0 | | 0.35 x
V _{DD} | V | | V _{IK} | SEL | Clamp Diode Voltage | V _{DD} = Max, I _{SEL} = -18mA | | -0.7 | -1.2 | V | | I _{IH} | SEL | Input HIGH Current | V_{DD} = Max, V_{SEL} = V_{DD} | | | ±5 | μА | | I _{IL} | SEL | Input LOW Current | V _{DD} = Max, V _{SEL} = GND | | | ±5 | μΑ | | SWITCHIN | IG CHARACTEF | RISTICS | | | | | - | | t _{SELON} | SEL, A _N ,
B _N /C _N | Line Enable Time | SEL to A_N , B_N , C_N
$R_L = 50 \Omega$, $C_L = 20 pF$ | | 8.0 | | ns | | tseloff | SEL, A _N ,
B _N /C _N | Line Disable Time | SEL to A _N , B _N , C _N
R _L = 50 Ω , C _L = 20 pF | | 5.0 | | ns | | t _{b-b} | A _N , B _N /C _N | Bit-to-bit skew | Within the same differential pair | | 5.0 | | ps | | t _{ch-ch} | A _N , B _N | Channel-to channel skew | Maximum skew between all channels | | 50 | | ps | ^{5.} For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. 6. Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading. 7. Guaranteed by design and/or characterization. ## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE ($T_A = -40$ °C to +85°C, $V_{DD} = 1.5$ V to 2.0 V, GND = 0V) | Symbol | Pins | Parameters | Conditions (Note 5) | Min. | Typ
(Note 6) | Max. | Units | | |------------------|--|--|---------------------|------|-----------------|------|-------|--| | DYNAMIC | DYNAMIC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE | | | | | | | | | BR | A_N to B_N , A_N to C_N | Signal Bit Rate | | | 8.0 | | Gbps | | | D _{IL} | A_N to B_N , A_N to C_N | | f = 4 GHz | | -2.0 | | dB | | | | | | f = 100 MHz | | -0.7 | | dB | | | D _{CTK} | A _N , B _N , C _N | Differential Crosstalk | f = 4 GHz | | -30 | | dB | | | | | | f = 100 MHz | | -58 | | dB | | | D _{ISO} | A _N to B _N ,
A _N to C _N | | f = 4 GHz | | -20 | | dB | | | | | | f = 100 MHz | | -58 | | dB | | | D _{RL} | A _N to B _N , | A _N to B _N , Differential Return Loss A _N to C _N | f = 4 GHz | | -9.0 | | dB | | | | A _N to C _N | | f = 100 MHz | | -22 | | dB | | - 5. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. - 6. Typical values are at V_{DD} = 1.8 V, T_A = 25°C ambient and maximum loading. - 7. Guaranteed by design and/or characterization. #### TYPICAL OPERATING CHARACTERISTICS Figure 4. Reference PCIe 3.0 Eye Diagram without Switch at 8 Gbps, 800 mV_{pp} Differential Swing Figure 5. PCle 3.0 Eye Diagram through NCN3411 at 8 Gbps, 800 mV_{pp} Differential Swing ## TYPICAL OPERATING CHARACTERISTICS Figure 6. Differential Insertion Loss Figure 7. Differential Crosstalk Figure 8. Differential Off Isolation Figure 9. Differential Return Loss Figure 10. R_{ON} vs. V_{IS} #### PARAMETER MEASUREMENT INFORMATION Figure 11. Differential Insertion Loss (S_{DD21}) and Differential Return Loss (S_{DD11}) Figure 13. Differential Crosstalk (S_{DD21}) Figure 14. Bit-to-Bit and Channel-to-Channel Skew Figure 15. t_{ON} and t_{OFF} Figure 16. Off State Leakage Figure 17. On State Leakage ⊕ 0.10 C A 42X L 42X b е **BOTTOM VIEW** e/2 0.10 C A B 0.05 С NOTE 3 DETAIL A D2> E2 ⊕ 0.10 C A B **DATE 15 FEB 2010** #### NOTES: - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP. - COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. | | MILLIMETERS | | | | |-----|-------------|------|--|--| | DIM | MIN | MAX | | | | Α | 0.70 | 0.80 | | | | A1 | 0.00 | 0.05 | | | | A3 | 0.20 | REF | | | | b | 0.20 0.3 | | | | | D | 3.50 BSC | | | | | D2 | 1.95 | 2.15 | | | | E | 9.00 | BSC | | | | E2 | 7.45 | 7.65 | | | | е | 0.50 BSC | | | | | K | 0.20 | | | | | L | 0.30 | 0.50 | | | | 11 | 0.00 | 0.15 | | | #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. = Pb-Free Package #### **RECOMMENDED** MOUNTING FOOTPRINT DIMENSIONS: MILLIMETERS | DOCUMENT NUMBER: | 98AON48316E | Electronic versions are uncontrolled except when accessed directly from the Document Repository
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|--------------------|--|-------------|--| | DESCRIPTION: | WQFN42 3.5X9, 0.5P | | PAGE 1 OF 1 | | ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative