

# AM/FM TUNER FOR CAR RADIO AND HIFI APPLICATIONS

#### FM-PART

- RF AGC GENERATION BY RF AND IF DETECTION FOR PIN DIODES AND MOSFET (PRESTAGE)
- 1<sup>ST</sup> MIXER FOR 1ST FM IF 10.7MHz WITH PROGRAMMABLE IF TANK ADJUST FOR FM AND AM UPCONVERSION
- 2 PROGRAMMABLE IF-GAIN STAGES
- 2<sup>ND</sup> MIXER FOR 2ND IF 450KHz
- INTERNAL IF BANDPASS FILTER WITH THREE BANDWIDTHS CONTROLLED BY ISS (INCLUDING WEATHER BAND)
- FULLY INTEGRATED FM-DEMODULATOR

#### AM-PART

- WIDE AND NARROW AGC GENERATION
- PREAMPLIFIER AND MIXER FOR ST 'F 10.7MHZ, AM UPCONVERSION
- 2<sup>ND</sup> MIXER FOR 2ND IF 450 (HZ
- INTEGRATED AM-DEMODULATOR
- OUTPUT FOR AM-STEREO-DECULSK

#### ADDITIONAL FEATURES

- EUCH PERFORMATICE FAST PLL FOR RDS-SYSTEM
- IF COUNTER FOR FM AND AM UPCON 'ERSION WITH SEARCH STOP SIGNAL
- DEVIALITY DETECTOR FOR LEVEL, DEVIATION, ADJACENT CHANNEL AND



MULTIPATH

- QUALITY DETECTION INFORMATIONS AS
- ► iSS (INTELL'GEN SELECTIVITY SYSTEM) FOR CANCELLATION OF ADJACENT CHANINEL AND NOISE INFLUENCES
- A CASENT CHANNEL MUTE
- ▲ FULLY ELECTRONIC ALIGNMENT
- ALL FUNCTIONS I<sup>2</sup>C-BUS CONTROLLED
- ISS FILTER STATUS INFORMATION I<sup>2</sup>C-BUS READABLE

#### DESCRIPTION

The TDA 7511 is a high performance tuner circuit for AM/FM car radio. It contains mixers, IF amplifiers, demodulators for AM and FM, quality detection, ISS filter and PLL synthesizer with IF counter on a single chip.

Use of BICMOS technology allows the implementation of several tuning functions and a minimum of external components.

#### **BLOCK DIAGRAM**



**57** 



#### PIN DESCRIPTION (conditived)

| N° | Pin         | Function                        |
|----|-------------|---------------------------------|
| 1  | Z N.W'X1IN2 | AM Input2 Mixer1                |
| 2  | AMMIX1IN1   | AM Input1 Mixer1 Reference      |
|    | AMRFAGCIN   | Input AM RF AGC                 |
| 4  | AMRFAGCOUT  | Output AM RF AGC                |
| 5  | FMPINDR     | FM PIN Diode Driver Output      |
| 6  | FMMOSDR     | FM MOS Driver Output            |
| 7  | FMMIX1IN1   | FM Input1 Mixer1                |
| 8  | GNDRF       | RF Ground                       |
| 9  | FMMIX1IN2   | FM Input2 Mixer1                |
| 10 | TV1         | Tuning Voltage 1                |
| 11 | FMRFAGCIN   | FM RF AGC Input                 |
| 12 | TV2         | Tuning Voltage 2                |
| 13 | ADJCH       | Ident. Adjacent Channel Output  |
| 14 | FSU         | Unweighted Fieldstrength Output |

#### **PIN DESCRIPTION** (continued)

| N° | Pin       | Function                                |
|----|-----------|-----------------------------------------|
| 15 | ISSTC     | Time Constant for ISS Filter Switch     |
| 16 | VCCVCO    | VCO Supply                              |
| 17 | GNDVCO    | VCO Ground                              |
| 18 | VCOB      | VCO Input Base                          |
| 19 | VCOE      | VCO Output Emitter                      |
| 20 | DEVTC     | Deviation Detector Time Constant        |
| 21 | XTALD     | Xtal Oscillator to MOS Drain            |
| 22 | XTALG     | Xtal Oscillator to MOS Gate             |
| 23 | GNDVCC3   | VCC3 Ground                             |
| 24 | SSTOP     | Search Stop Output                      |
| 25 | SDA       | I <sup>2</sup> C-Bus Data               |
| 26 | SCL       | I <sup>2</sup> C-Bus Clock              |
| 27 | VCC3      | Supply Tuning Voltage                   |
| 28 | LPOUT     | Op Amp Output to PLL Loop Filters       |
| 29 | VREF2     | Voltage Reference for PLL Op Am         |
| 30 | LPAM      | Op Amp Input to PLL Loo's Filters AM    |
| 31 | LPFM      | Op Amp Input to PLL Loop Filters FM     |
| 32 | LPHC      | High Current PI I. Loop Filter Input    |
| 33 | GNDVCC1   | Digital Grc in 1                        |
| 34 | AMST/MP   | AM Sterco Out / Ident. Multipath Output |
| 35 | FSW       | V /eighted Fieldstrength Output         |
| 36 | VCC.1     | Digital Supply                          |
| 37 | ΜΓΧ/ΑΓΛΜ  | MPX Output / AM AF Output               |
| 38 | ∧ MIFREF  | Reference Voltage AM IF Amp             |
| 39 | AMIFBPF   | AM IF Filter                            |
| 25 | AMAGC2TC  | AM AGC2 Time Constant                   |
| 41 | AMDETC    | AM Detector Capacitor                   |
| 42 | MUTETC    | Softmute Time Constant                  |
| 43 | AMIF2IN   | Input AM IF2                            |
| 44 | FMDEMC    | FM Demodulator Reference                |
| 45 | FMMIX2IN2 | FM IF1 MIX2 Input1                      |
| 46 | FMMIX2IN1 | FM IF1 MIX2 Input2                      |
| 47 | GNDDEM    | Ground FM Demodulator                   |
| 48 | VREF1     | Reference 5V                            |
| 49 | GNDVCC2   | Analog Ground                           |
| 50 | FMAMP2OUT | FM IF1 Amplifier2 Output                |



| N°   | Pin            | Function                   |
|------|----------------|----------------------------|
| 51   | VCC2           | Analog Supply              |
| 52   | FMAMP2IN       | FM IF1 Amplifier2 Input    |
| 53   | FMIF1REF       | FM IF1 Amplifier Reference |
| 54   | FMAMP1OUT      | FM IF1 Amplifier1 Output   |
| 55   | AMMIX2OUT2     | AM Tank 450kHz             |
| 56   | AMMIX2OUT1     | AM Tank 450kHz             |
| 57   | FMAMP1IN       | FM IF1 Amplifier1 Input    |
| 58   | AMIF1IN        | AM IF1 Input               |
| 59   | GNDIF1AMP      | FM IF1 Amplifier Ground    |
| 60   | FMIF1AGCIN     | FM IF1 AGC Input           |
| 61   | MIX1OUT2       | MIX Tank 10.7MHz           |
| 62   | MIX1OUT1       | MIX Tank 10.7MHz           |
| 63   | AMRFAGCTC      | AM RF AGC Time Constant    |
| 64   | AMPINDR        | AM PIN Diode Driver Output |
| SOLU | ITE MAXIMUM RA | ATINGS                     |

#### **PIN DESCRIPTION** (continued)

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter           |     | Value       | Unit |
|------------------|---------------------|-----|-------------|------|
| Vs               | Supply Voltage      |     | 10.5        | V    |
| T <sub>amb</sub> | Ambient Temperature | abs | -40 to 85   | °C   |
| T <sub>stg</sub> | Storage Temperature | 0   | -55 to +150 | °C   |

## THERMAL DATA

|                                         | *(5)      |       |      |
|-----------------------------------------|-----------|-------|------|
| Symbol                                  | Parameter | Value | Unit |
| R <sub>Th(j-an-b)</sub> Fihermal resist | ance      | 68    | °C/W |

#### **ELECTRICAL CHARACTERISTCS**

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = 8.5V, f_{RF} = 98MHz, dev. = 40kHz, f_{MOD} = 1kHz, f_{IF1} = 10.7MHz, f_{IF2} = 450KHz, f_{Xtal} = 10.25MHz, in test or application circuit, unless otherwise$ specified.

| Symbol           | Parameter              | Test Condition | Min. | Тур. | Max. | Unit |
|------------------|------------------------|----------------|------|------|------|------|
| Supply           |                        |                |      |      |      |      |
| V <sub>CC1</sub> | Digital supply voltage |                | 7.5  | 8.5  | 10   | V    |
| V <sub>CC2</sub> | Analog supply voltage  |                | 7.5  | 8.5  | 10   | V    |
| V <sub>CC3</sub> | Analog tuning voltage  |                | 7.5  | 8.5  | 10   | V    |
| Vccvco           | VCO supply voltage     |                | 7.5  | 8.5  | 10   | V    |

57

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = 8.5V, f_{RF} = 98MHz, dev. = 40kHz, f_{MOD} = 1kHz, f_{IF1} = 10.7MHz, f_{IF2} = 450KHz, f_{Xtal} = 10.25MHz, in test or application circuit, unless otherwise$ specified.

| Symbol              | Parameter                  | Test Condition                                               | Min.                      | Тур.  | Max. | Unit |
|---------------------|----------------------------|--------------------------------------------------------------|---------------------------|-------|------|------|
| V <sub>CCMIX1</sub> | MIX1 supply voltage        |                                                              | 7.5                       | 8.5   | 10   | V    |
| V <sub>CCMIX2</sub> | MIX2 supply voltage        |                                                              | 7.5                       | 8.5   | 10   | V    |
| I <sub>CC1</sub>    | Supply current             | FM ON                                                        |                           | 7.5   |      | mA   |
| I <sub>CC1</sub>    | Supply current             | AM ON                                                        |                           | 10    |      | mA   |
| I <sub>CC2</sub>    | Supply current             | FM ON                                                        |                           | 50    |      | mA   |
| I <sub>CC2</sub>    | Supply current             | AM ON                                                        |                           | 60    | 10   | r.ıA |
| I <sub>CC3</sub>    | Supply current             |                                                              |                           | 2     | 777  | mA   |
| Iccvco              | Supply current             |                                                              |                           | 2.5   |      | mA   |
| ICCMIX1             | Supply current             | FM ON                                                        | ~                         | 6     |      | mA   |
| I <sub>CCMIX1</sub> | Supply current             | AM ON                                                        |                           | 5     | 1    | mA   |
| I <sub>CCMIX2</sub> | Supply current             | AM ON                                                        |                           | 5     | 6    | mA   |
| Referenc            | e Voltages                 | <u></u>                                                      |                           | 0,    |      |      |
| V <sub>REF1</sub>   | Internal reference voltage | I <sub>REF1</sub> = 0mA                                      | 0                         | 5     |      | V    |
| V <sub>REF2</sub>   | Internal reference voltage | I <sub>REF2</sub> = 0 nA                                     |                           | 2.5   |      | V    |
| Wide Bar            | nd RF AGC                  |                                                              |                           |       |      |      |
| V <sub>11</sub>     | Threshold AGC start        | $V_3 = V_{CC2}/2$                                            |                           | 80    |      | dBµ  |
| R <sub>IN</sub>     | Input resistance           |                                                              |                           | 500   |      | Ω    |
| C <sub>IN</sub>     | Input capacitance          | 0,                                                           |                           | 2.5   |      | pF   |
| Narrow B            | and RF & Kevir g AC C      |                                                              |                           | L     |      |      |
| V <sub>60</sub>     | Lower thre: nold           | FMAGC, V <sub>11</sub> = 0mV <sub>RMS</sub>                  |                           | 82    |      | dBµ  |
| V <sub>60</sub>     | Up, e. th reshold          | FMAGC, V <sub>11</sub> = 0mV <sub>RMS</sub>                  |                           | 92    |      | dBµ  |
| RIN                 | Input resistance           |                                                              |                           | 10    |      | kΩ   |
|                     | Input capacitance          |                                                              |                           | 2.5   |      | pF   |
|                     | SFET Driver Output         | 1                                                            | I                         | I     | I    | 1    |
| V <sub>6</sub>      | Max. AGC output voltage    | V <sub>11</sub> = 0mV <sub>RMS</sub>                         | V <sub>CC2</sub><br>-0.5V |       |      | V    |
| V <sub>6</sub>      | Min. AGC output voltage    | $V_{11} = 50 m V_{RMS}$                                      |                           |       | 0.5  | V    |
| I <sub>6</sub>      | Min. AGC charge current    | $V_{11} = 0mV_{RMS}, V_6 = V_{CC2}/2$                        |                           | -12.5 |      | μA   |
| I <sub>6</sub>      | Max. AGC discharge current | $V_{11} = 50 \text{mV}_{\text{RMS}}, V_6 = V_{\text{CC2}}/2$ |                           | 1.25  |      | mA   |
| AGC PIN             | Diode Driver Output        | 1                                                            | I                         | I     | I    | 1    |
| I <sub>5</sub>      | AGC OUT, current min.      | $V_{11} = 0mV_{RMS}, V_5 = 2V$                               |                           | 50    |      | μA   |
| I <sub>5</sub>      | AGC OUT, current max.      | $V_{11} = 50 \text{ mV}_{RMS}, V_5 = 2V$                     |                           | -6    |      | mA   |
| Mixer1 (1           | 0.7MHz)                    | <u>I</u>                                                     | L                         | 1     |      | 1    |
|                     | Input impedance            | Balanced, f = 98MHz                                          |                           |       |      | Ω    |

**A7/** 

6/41

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = 8.5V, f_{RF} = 98MHz, dev. = 40kHz, f_{MOD} = 1kHz, f_{IF1} = 10.7MHz, f_{IF2} = 450KHz, f_{Xtal} = 10.25MHz, in test or application circuit, unless otherwise specified.$ 

| Symbol               | Parameter                 | Test Condition                                     | Min.     | Тур. | Max.    | Unit                  |
|----------------------|---------------------------|----------------------------------------------------|----------|------|---------|-----------------------|
| IP3                  | 3rd order intercept point |                                                    |          | 122  |         | dBµV                  |
| F                    | Noise figure              |                                                    |          | 6    |         | dB                    |
| A <sub>C</sub>       | Conversion gain           |                                                    |          | 120  |         | mS                    |
| IF1 Ampl             | ifier1 & 2 (10.7MHz)      |                                                    |          |      |         |                       |
| A <sub>min</sub>     | Min. gain                 | IFG                                                |          | 9    |         | dB                    |
| A <sub>max</sub>     | Max. gain                 | IFG                                                |          | 15   | .10     | ι'В                   |
| R <sub>IN</sub>      | Input resistance          |                                                    |          | 330  | 775     | Ω                     |
| R <sub>OUT</sub>     | Output resistance         |                                                    |          | 3.0  |         | Ω                     |
| P <sub>1dB</sub>     | 1dB compression point     | Output referred                                    |          | 120  |         | dBµV                  |
| IP3                  | 3rd order Intercept Point | Output referred                                    |          | 132  | - 2 ( 9 | dBµ∨                  |
| Mixer2 (4            | 50kHz)                    | -*8                                                | <u> </u> |      | C       |                       |
| R <sub>IN</sub>      | Input impedance           | 101                                                |          | 330  |         | Ω                     |
| V <sub>46</sub>      | Max. input voltage        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             | 25       | 900  |         | mV <sub>RN</sub><br>S |
| V <sub>48</sub>      | Limiting sensitivity      | S/N = 20cB                                         |          | 25   |         | μV                    |
| А                    | Mixer gain                | 10                                                 |          | 18   |         | dB                    |
| Limiter 1            | (450kHz)                  | 51 . 60'                                           |          | I    | I       |                       |
| G <sub>Limiter</sub> | Gain                      |                                                    |          | 80   |         | dB                    |
| Demodul              | ator, Audio Output        |                                                    |          | I    | I       |                       |
| THD                  | 0                         | Dev.= 75kHz, V <sub>46</sub> = 10mV <sub>RMS</sub> |          |      | 0.1     | %                     |
| V <sub>MPX</sub>     | MPX output signal         | Dev.= 75kHz                                        |          | 500  |         | mV <sub>RN</sub><br>S |
| ROUT                 | Ou put resistance         |                                                    |          | 350  |         | Ω                     |
|                      | DC offset fine adjust     | DEM, MENA=1                                        |          | 6    |         | mV                    |
| !∆V  <sub>max</sub>  | DC offset fine adjust     | DEM, MENA=1                                        |          | 186  |         | mV                    |
| S/N                  |                           | Dev.= 40kHz,V <sub>46</sub> = 10mV <sub>RMS</sub>  |          | 75   |         | dB                    |
| Quality D            | etection                  |                                                    |          |      |         |                       |
| S-meter,             | Unweighted Fieldstrength  |                                                    |          |      |         |                       |
| V46                  | Min. input voltage MIX2   |                                                    |          | 10   |         | μV                    |
| ΔV                   | Per decade                | SMSL = 0                                           |          | 1    |         | V                     |
| ΔV                   | Per decade                | SMSL = 1                                           |          | 1.5  |         | V                     |
| V <sub>14</sub>      | Fieldstrength output      | $V_{46} = 0V_{RMS}$                                |          | 0.1  |         | V                     |
| V <sub>14</sub>      | Fieldstrength output      | $V_{46} = 1V_{RMS}$                                |          | 4.9  |         | V                     |
| R <sub>OUT</sub>     | Output resistance         |                                                    |          | 4    |         | kΩ                    |
|                      |                           |                                                    |          |      |         |                       |

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = 8.5V, f_{RF} = 98MHz, dev. = 40kHz, f_{MOD} = 1kHz, f_{IF1} = 10.7MHz, f_{IF2} = 450KHz, f_{Xtal} = 10.25MHz, in test or application circuit, unless otherwise$ specified.

| TK     Temp coeff.     0       V35     Fieldstrength output     V46 = 0VRMS     2.5       V35     Fieldstrength output     V46 = 1VRMS     4.9       ROUT     Output resistance     12     12       Adjacent Channel Gain     4.9     52     1       Amin     Gain minimum     ACG     52     1       Amax     Gain maximum     ACG     52     1       Amax     Gain maximum     ACG     52     1       Amax     Gain maximum     ACG     52     1       Adjacent Channel Filter     100     52     1       fHP     -3dB frequency highpass     ACF     100     1       f-20dB     Attenuation 20dB     70     1     2       Adjacent Channel Output     12     1     1     1       V13     Output voltage high     1     1     1       ROUT     Output voltage high     1     1     1       Amin     Gain minimum     MPG     12     1                                                                                                          | ti  | ion      | Min.                | Тур. | Max. | Unit  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|---------------------|------|------|-------|
| Semeter, Weighted Fieldstrength     V46 = 0VRMS     2.5       V35     Fieldstrength output     V46 = 1VRMS     4.9       ROUT     Output resistance     12       Adjacent Channel Gain     ACG     52       Amin     Gain minimum     ACG     52       Amax     Gain maximum     ACG     52       Amax     Gain maximum     ACG     52       Amax     Gain maximum     ACG     52       Adjacent Channel Filter     100     52       fHP     -3dB frequency highpass     ACF     100       fsp     Centre frequency     ACF     100       fsgacent Channel Output     70     Adjacent     70       V13     Output voltage low     0.1     1       V13     Output voltage high     4.9     23       Mutipath Channel Gain     12     4     1       Mutipath Bard/sa SFilter     12     12       fuewer     Testifter frequency low     MPF     19       f figspi     Centre frequency up     MPF     31                                           |     |          | -1.8                |      | 1.8  | V     |
| V35     Fieldstrength output     V46 = 0VRMS     2.5       V35     Fieldstrength output     V46 = 1VRMS     4.9       ROUT     Output resistance     12       Adjacent Channel Gain     ACG     52       Amin     Gain minimum     ACG     52       Amax     Gain maximum     ACG     53       Adjacent Channel Filter     100     54       fHP     -3dB frequency highpass     ACF     100       fsge     Centre frequency     ACF     100       fsge     Centre frequency     ACF     100       fsge     Centre frequency     ACF     100       fsge     Qutput voltage low     0.1     0       V13     Output voltage high     4.9     0.1       V13     Output voltage high     4.9     0       Multipath Channel Gain     12     0     12       Amax     Gain maximum     MPG     12     12       Amax     Gain maximum     MPG     12     12       Amax     Gain maximum <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>ppm/k</td> |     |          |                     | 0    |      | ppm/k |
| V35     Fieldstrength output     V46 = 1VRMS     4.9       ROUT     Output resistance     12       Adjacent Channel Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |          |                     |      |      |       |
| Rout     Output resistance     12       Adjacent Channel Gain     ACG     52       Amax     Gain maximum     ACG     52       Amax     Gain maximum     ACG     53       Adjacent Channel Filter     100     56       Adjacent Channel Filter     100     56       Adjacent Channel Filter     100     6       Gein maximum     ACF     100     6       ftpP     -3dB frequency highpass     ACF     100     6       ftpP     Centre frequency     ACF     100     70     1       Adjacent Channel Output     70     1     Adjacent Channel Output     70     1       V13     Output voltage low     0.1     1     1     1       V13     Output voltage high     4.9     1     1       ROUT     Output resistance     4     12     1       Amax     Gain maximum     MPG     12     1       Amax     Gain maximum     MPG     12     1       I tower     Ten                                                                                     |     |          |                     | 2.5  |      | V     |
| Adjacent Channel Gain     ACG     S2     I       Amax     Gain maximum     ACG     S3     I       Amax     Gain maximum     ACG     S3     I       Adjacent Channel Filter     I00     I     II     III       fHP     -3dB frequency highpass     ACF     IIII     IIII     IIIII     IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |                     | 4.9  |      | V     |
| Amin     Gain minimum     ACG     52       Amax     Gain maximum     ACG     55     1       Adjacent Channel Filter     100     55     1       fHP     -3dB frequency highpass     ACF     100     1       fBP     Centre frequency     ACF     100     1       fL20dB     Attenuation 20dB     70     1       Adjacent Channel Output     70     1     1       V13     Output voltage low     0.1     1       V13     Output voltage high     4.9     1       ROUT     Output resistance     4     1       Multipath     Channel Gain     12     1       Amax     Gain minimum     MPG     12     1       Amax     Gain maximum     MPG     31     1       Q     Quality factor     5     1     1       f Inpert     Centre frequency up     MPF     19     1       f Inpert     Centre frequency up     MPF     31     1       Q                                                                                                               |     |          |                     | 12   |      | LΩ    |
| Amax     Gain maximum     ACG     55       Adjacent Channel Filter     100     56       fHP     -3dB frequency highpass     ACF     100       fBP     Centre frequency     ACF     100       fLD     Attenuation 20dB     70     100       Adjacent Channel Output     70     70       V13     Output voltage low     0.1     70       V13     Output voltage high     4.9     70       ROUT     Output resistance     4     100       Amax     Gain minimum     MPG     12     70       Multipath     Channel Gain     70     12     70       Multipath Display     MPG     12     70     12       Amax     Gain maximum     MPG     23     70       Multipath Bit states     70     19     19     71       f Lower     Tent frequency low     MPF     19     71       Gain maximum     MPF     31     70     70       Quotput voltage low     0.1     19 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                      |     |          |                     |      |      |       |
| Adjacent Channel Filter       fHP     -3dB frequency highpass     ACF     100       fBP     Centre frequency     ACF     100       fLOBB     Attenuation 20dB     70     100       Adjacent Channel Output     70     100     100       V13     Output voltage low     0.1     100       V13     Output voltage high     4.9     100       ROUT     Output resistance     4     100       Amin     Gain minimum     MPG     12       Amax     Gain maximum     MPG     23       Multipath Banchass Filter     19     1       fLower     Sentre frequency low     MPF     19       Guin totage low     0.1     1     1       Q     Quality factor     5     1       V34     Output voltage low     0.1     1       V34     Output voltage high     4.9     1       Quality factor     2.5     1     1       V34     Output voltage high     4.9     2.5       ISS                                                                                 |     |          |                     | 37   | , —  | dB    |
| fHP     -3dB frequency highpass     ACF     100       fBP     Centre frequency     ACF     100       f_20dB     Attenuation 20dB     70     100       Adjacent Channel Output     70     70       V13     Output voltage low     0.1     70       N13     Output voltage high     4.9     100       ROUT     Output resistance     4     100       Amin     Gain minimum     MPG     12     12       Amax     Gain maximum     MPG     23     12       Amax     Gain maximum     MPG     12     13       Multipath Band sas Filter     19     12     13       f Lower     Ter frequency low     MPF     19     19       f lingent     Output yoltage low     0.1     19     10       Q     Quality factor     5     1     10       Gain trait frequency up     MPF     31     2     2       Multipath Output     Output yoltage low     0.1     34     34     34                                                                                 |     |          |                     | 30   |      | dB    |
| fBP     Centre frequency     ACF     100       f.20dB     Attenuation 20dB     70        Adjacent Channel Output     70        V13     Output voltage low     0.1        V13     Output voltage high     4.9        ROUT     Output resistance     4        Multipath Channel Gain     MPG     12        Amax     Gain minimum     MPG     23        Multipath Band'sass Filter     19     19        fLower     Centre frequency up     MPF     19        g     Quality factor     5     1        V34     Output voltage low     0.1         V34     Output voltage high     4.9         V34     Output voltage high     2.5         ISS (intelligent Selectivity System)     2.5                                                                                                                                                                                                                                                                |     |          | +0                  |      | X    | 51    |
| f.20dB     Attenuation 20dB     70       Adjacent Channel Output     0.1     70       V13     Output voltage low     0.1       V13     Output voltage high     4.9       ROUT     Output resistance     4       Multipath     Channel Gain     12       Amax     Gain minimum     MPG     12       Amax     Gain maximum     MPG     23       Multipath     Benuticass Filter     19     1       flower     Centre frequency low     MPF     19       g Q     Quality factor     5     1       V34     Output voltage low     0.1     4.9       V34     Output voltage low     0.1     4.9       V34     Output voltage low     2.5     1       V34     Output voltage high     4.9     2.5     1       ISS (intelligent Selectivity System)     2.5     1     2.5                                                                                                                                                                               |     | - 19     | $\overline{\Gamma}$ | 100  | 6    | kHz   |
| Adjacent Channel Output       V13     Output voltage low     0.1       V13     Output voltage high     4.9       ROUT     Output resistance     4       Multipath     Channel Gain     12       Amax     Gain minimum     MPG     12       Amax     Gain maximum     MPG     23       Multipath     Bandisass Filter     19     1       floorer     Telltre frequency low     MPF     19       floorer     Telltre frequency up     MPF     31       Q     Quality factor     5     1       V34     Output voltage low     0.1     4.9       V34     Output voltage high     4.9     2.5       ISS (intelligent Selectivity System)     2.5     ISS (intelligent Selectivity System)                                                                                                                                                                                                                                                             |     |          |                     | 100  | 7    | kHz   |
| V13   Output voltage low   0.1     V13   Output voltage high   4.9     ROUT   Output resistance   4     Multipath   Channel Gain   4     Amin   Gain minimum   MPG   12     Amax   Gain maximum   MPG   23     Multipath   Bain Class Filter   19   1     fLower   Centre frequency low   MPF   19     f Import   Centre frequency up   MPF   31     Q   Quality factor   5   1     V34   Output voltage low   0.1   4.9     V34   Output voltage high   4.9   2.5     ISS (intelligent Selectivity System)   2.5   1                                                                                                                                                                                                                                                                                                                                                                                                                            | 5   | $\Theta$ | 05                  | 70   |      | kHz   |
| V13Output voltage high4.9ROUTOutput resistance4Multipath Channel Gain12AminGain minimumMPGAmaxGain maxumumMPGGain maxumumMPG23Multipath Band base Filter19fLowerCentre frequency lowMPFMPF19f InpenCentre frequency upMPFQQuality factor5Multipath OutputV34Output voltage low0.1V34Output voltage high4.9ROUTOutput resistance2.5ISS (intelligent Selectivity System)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          |                     |      |      | 1     |
| ROUTOutput resistance4MultipathChannel GainAminGain minimumMPG12AmaxGain maximumMPG23MultipathBit not values as Filter23flowerSentre frequency lowMPF19f importCentre frequency upMPF31QQuality factor51ValOutput voltage low0.1ValOutput voltage high4.9ROUTOutput voltage high2.5ISS (intelligent Selectivity System)ISS (intelligent Selectivity System)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | 101      | 1                   | 0.1  |      | V     |
| Multipath   Channel Gain     Amin   Gain minimum   MPG   12     Amax   Gain maximum   MPG   23     Multipath   Bit not state struct structure   23     Multipath   Bit not structure   19     fluower   Tente frequency low   MPF   19     fluower   Tente frequency up   MPF   31     Q   Quality factor   5   1     Multipath   Output   0.1   1     V34   Output voltage low   0.1   4.9     Rout   Output resistance   2.5   1     ISS (intelligent Selectivity System)   Filter 450kHz   1                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ( | 0,0      |                     | 4.9  |      | V     |
| AminGain minimumMPG12AmaxGain maximumMPG23MultipatBandhass FilterfLowerSentre frequency lowMPF19filingentCentre frequency upMPF31QQuality factor51Multipath Output51V34Output voltage low0.1V34Output voltage high4.9ROUTOutput resistance2.5ISS (intelligent Selectivity System)Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |          |                     | 4    |      | kΩ    |
| AmaxGain maximumMPG23MultipathBand base FilterfLowerGeintre frequency lowMPF19filing allCentre frequency upMPF31QQuality factor051QQuality factor511V34Output voltage low0.10.1V34Output voltage high4.94.9ROUTOutput resistance2.51ISS (intelligent Selectivity System)Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          |                     |      | 1    | 1     |
| Multipath Band basis Filter     fLower   Centre frequency low   MPF   19     f Ingrat   Centre frequency up   MPF   31     Q   Quality factor   5   1     Multipath Output   5   1     V34   Output voltage low   0.1     V34   Output voltage high   4.9     ROUT   Output resistance   2.5     ISS (intelligent Selectivity System)   Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          |                     | 12   |      | dB    |
| fLower     Centre frequency low     MPF     19       f Incent     Centre frequency up     MPF     31       Q     Quality factor     5     1       Q     Quality factor     5     1       Multipath Output     5     1     1       V34     Output voltage low     0.1     1       V34     Output voltage high     4.9     1       ROUT     Output resistance     2.5     1       ISS (intelligent Selectivity System)     Filter 450kHz     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |          |                     | 23   |      | dB    |
| f Inpat   Centre frequency up   MPF   31     Q   Quality factor   5   5     Multipath Output   5   0.1     V <sub>34</sub> Output voltage low   0.1     V <sub>34</sub> Output voltage high   4.9     R <sub>OUT</sub> Output resistance   2.5     ISS (intelligent Selectivity System)   Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |          |                     |      |      |       |
| Q   Quality factor   5   1     Multipath Output   5   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |          |                     | 19   |      | kHz   |
| Multipath Output     V34   Output voltage low   0.1     V34   Output voltage high   4.9     ROUT   Output resistance   2.5     ISS (intelligent Selectivity System)   Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |          |                     | 31   |      | kHz   |
| V <sub>34</sub> Output voltage low 0.1   V <sub>34</sub> Output voltage high 4.9   R <sub>OUT</sub> Output resistance 2.5   ISS (intelligent Selectivity System) Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |          | 5                   |      | 10   |       |
| V34   Output voltage high   4.9     R <sub>OUT</sub> Output resistance   2.5     ISS (intelligent Selectivity System)   Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          |                     |      |      |       |
| R <sub>OUT</sub> Output resistance 2.5   ISS (intelligent Selectivity System) Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |          |                     | 0.1  |      | V     |
| ISS (intelligent Selectivity System)<br>Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          |                     | 4.9  |      | V     |
| Filter 450kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |          |                     | 2.5  |      | kΩ    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |          |                     |      | I    |       |
| f <sub>centre</sub> Centre frequency f <sub>REF intern</sub> = 450kHz 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |          |                     |      |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |          |                     | 450  |      | kHz   |
| BW 3dB     Bandwidth, -3dB     ISS80 = 1     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |          |                     | 80   |      | kHz   |
| BW     Bandwidth, -20dB     ISS80 = 1     150       20dB     150     150     150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |          |                     | 150  |      | kHz   |

**A7/** 

8/41

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = 8.5V, f_{RF} = 98MHz, dev. = 40kHz, f_{MOD} = 1kHz, f_{IF1} = 10.7MHz, f_{IF2} = 450KHz, f_{Xtal} = 10.25MHz, in test or application circuit, unless otherwise specified.$ 

| Symbol            | Parameter                    | Test Condition   | Min. | Тур. | Max.     | Uni      |
|-------------------|------------------------------|------------------|------|------|----------|----------|
| BW 3dB            | Bandwidth, -3dB              | ISS80 = 0        |      | 120  |          | kHz      |
| BW<br>20dB        | Bandwidth, -20dB             | ISS80 = 0        |      | 250  |          | kHz      |
| BW 3dB            | Bandwidth weather band       | ISS30 = 1        |      | 30   |          | kHz      |
| BW<br>20dB        | -20dB weather band           | ISS30 = 1        |      | 80   |          | kHz      |
| $\Delta f_{min}$  | Fine adjust                  | AISS             |      | -20  | .19      | 5 k Hz   |
| $\Delta f_{max}$  | Fine adjust                  | AISS             |      | 10   | 672      | kH:      |
| Adjacent          | Channel ISS Filter Threshold |                  |      |      | <u> </u> | 1        |
| V <sub>NTH</sub>  | Internal low threshold       | ACNTH            | 5    | 00   |          | V        |
| V <sub>NTH</sub>  | Internal high threshold      | ACNTH            |      | 0.3  |          | ν v      |
| Vwth              | Internal low threshold       | ACWTH            |      | 0.25 | 0        | V        |
| V <sub>WTH</sub>  | Internal high threshold      | ACWTH            |      | 0.95 |          | V        |
| Multipat          | h Threshold                  | -5               | 0    |      |          |          |
| VTHMP             | Internal low threshold       | MPTH             |      | 0.50 |          | V        |
| V <sub>THMP</sub> | Internal high threshold      | МРТН             |      | 1.25 |          | V        |
| ISS Filte         | r Time Constant              | 5 00             |      |      |          |          |
| I <sub>15</sub>   | Charge current low mid       | TISS, ISSCTL = 1 |      | -74  |          | μA       |
| I <sub>15</sub>   | Charge current high min      | TISS, ISSCTL = 1 |      | -60  |          | μA       |
| I <sub>15</sub>   | Charge current k w harrow    | TISS, ISSCTL = 1 |      | -124 |          | μA       |
| I <sub>15</sub>   | Charge cui ent high narrow   | TISS, ISSCTL = 1 |      | -110 |          | μA       |
| I <sub>15</sub>   | Dis.th.trge current low      | TISS, ISSCTL = 0 |      | 1    |          | μA       |
| I <sub>15</sub>   | Lischarge current high       | TISS, ISSCTL = 0 |      | 15   |          | μA       |
|                   | Low voltage                  | ISSCTL = 0       |      | 0.1  |          | V        |
| V <sub>15</sub>   | High voltage                 | ISSCTL = 1       |      | 4.9  |          | V        |
| ISS Filter        | Switch Threshold             |                  | 1    | 1    | 1        | 1        |
| V <sub>15</sub>   | Threshold ISS on             | ISSCTL = 0       |      | 3    |          | V        |
| V <sub>15</sub>   | Threshold ISS off            | ISSCTL = 0       |      | 1    |          | V        |
| V <sub>15</sub>   | Threshold ISS narrow on      | ISSCTL = 0       |      | 4    |          | V        |
| V <sub>15</sub>   | Threshold ISS narrow off     | ISSCTL = 0       |      | 2    |          | V        |
| I <sub>20</sub>   | Charge current low           | TDEV             |      | -20  |          | μA       |
| I <sub>20</sub>   | Charge current high          | TDEV             |      | -34  |          | μA       |
| I <sub>20</sub>   | Discharge current low        | TDEV             |      | 6    |          | μA       |
|                   | Discharge current high       | TDEV             |      |      |          | <u> </u> |

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = 8.5V, f_{RF} = 98MHz, dev. = 40kHz, f_{MOD} = 1kHz, f_{IF1} = 10.7MHz, f_{IF2} = 450KHz, f_{Xtal} = 10.25MHz, in test or application circuit, unless otherwise specified.$ 

| Symbol                   | Parameter                              | Test Condition                                                               | Min. | Тур.  | Max. | Unit |
|--------------------------|----------------------------------------|------------------------------------------------------------------------------|------|-------|------|------|
| DEV <sub>WTH</sub>       | Internal low threshold                 | DWTH                                                                         |      | 30    |      | kHz  |
| DEV <sub>WTH</sub>       | Internal high threshold                | DWTH                                                                         |      | 75    |      | kHz  |
| RATIO <sub>mi</sub>      | Referred to threshold                  | DTH                                                                          |      | 1     |      |      |
| RATIO <sub>m</sub>       | Referred to threshold                  | DTH                                                                          |      | 1.5   |      |      |
| Softmute                 |                                        |                                                                              |      |       |      | 5    |
| Vant                     | Upper startpoint                       | SMTH, SMD, SLOPE = 0                                                         |      | 16    | 61   | dBµV |
| V <sub>ANT</sub>         | lower startpoint                       | SMTH, SMD, SLOPE = 0                                                         |      |       |      | dBµV |
| asMmin                   | Min. softmute depth                    | SMD, SLOPE = 0, SMTH <sub>Upper</sub>                                        | ~    | 18    |      | dB   |
| asMmax                   | Max. softmute depth                    | SMD, SLOPE = 0, SMTH <sub>Upper</sub>                                        |      | 36    | 12   | dB   |
| a <sub>SMTHIS</sub><br>S | Mute depth threshold for ISS filter on | SMCTH                                                                        | 0.2  | 2     | 2    | dB   |
| V <sub>ACTH</sub>        | Internal AC mute threshold             | ACM                                                                          | 60   | 0     | 220  | mV   |
| asmac                    | AC mute depth                          | 000                                                                          | Y    | 6     |      | dB   |
| I <sub>42</sub>          | Charge current                         | <u> </u>                                                                     |      | -47.5 |      | μA   |
| I <sub>42</sub>          | Discharge current                      |                                                                              |      | 2.5   |      | μA   |
| S/N Over                 | All                                    | 5                                                                            |      |       |      | 4    |
| S/N                      | - codulo.                              | V <sub>IN_min</sub> = 60dBµV,<br>dev.= 40kHz,LP=15KHz<br>deemphasis t = 50µs |      | 66    |      | dB   |

#### ELECTRICAL CHARACTERISTICS

 $T_{amb} = +25^{\circ}\text{G}, \quad V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = V_{CCMIX2} = 8.5\text{V}, \quad f_{RF} = 1\text{MHz}, \quad f_{MOD} = 400\text{Hz} \text{ at } 30\% \text{ AMf}_{IF1} = 1\text{C} II\text{Hz}, \quad f_{IF2} = 450\text{kHz}, \quad f_{xtal} = 10.25\text{MHz}, \quad \text{in test or application circuit, (unless otherwise noted, V_{inRF} antenr a input).}$ 

| οσιπίζ               | Parameter             | Test Condition                                                                                                                 | Min. | Тур. | Max. | Unit |
|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| AM SECT              | ION                   |                                                                                                                                |      |      |      |      |
| Global               | 10                    |                                                                                                                                |      |      |      |      |
| VINRF                | Max. sensitivity      | $\begin{array}{l} \text{Ref.: } V_{\text{INRF}} = 74 \text{dB}\mu\text{V}, \\ \Delta\text{V}_{37} = -10 \text{dB} \end{array}$ |      | 19   |      | dBμV |
| V <sub>INRF</sub> us | Usable sensitivity    | (S+N)/N = 20 dB                                                                                                                | 30   | 26   |      | dBµV |
| ΔVINRF               | AGC Range             | $\begin{array}{l} \text{Ref.: } V_{\text{INRF}} = 74 \text{dB}\mu\text{V}, \\ \Delta\text{V}_{37} = -10 \text{dB} \end{array}$ | 51   |      |      | dB   |
| (S+N)/N              | Signal to Noise Ratio | Ref.: V <sub>INRF</sub> = 74dBµV                                                                                               | 49   | 56   |      | dB   |

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVICO} = V_{CCMIX1} = V_{CCMIX2} = 8.5V, f_{RF} = 1MHz, f_{MOD} = 400Hz at 30\%$ AMf<sub>IF1</sub> = 10.7MHz, f<sub>IF2</sub> = 450kHz, f<sub>xtal</sub> = 10.25MHz, in test or application circuit, (unless otherwise noted, V<sub>inRF</sub> antenna input).

| Symbol              | Parameter                                      | Test Condition                                                                                                   | Min.       | Тур.                     | Max. | Unit                  |
|---------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------|--------------------------|------|-----------------------|
| a <sub>lF</sub>     | IF rejection                                   | Ref: $V_{INRF} = 74dB\mu V$ ,<br>IF1 = 10.7MHz<br>IF2 = 450kHz<br>$\Delta V_{37} = -10dB$                        | 100<br>100 |                          |      | dB<br>dB              |
| a <sub>TW</sub>     | Tweet                                          | C <sub>28</sub> = 22µF                                                                                           | -3         | -0.7                     |      | dB                    |
| f <sub>AF</sub>     | Frequency response                             | Ref.: $V_{INRF} = 74 dB\mu V$ ,<br>$\Delta V_{AF} = -3 dB$                                                       |            | 3.6                      |      | kHz                   |
| VINRFSS             | Seek Stop Sensitivity                          | AMSS                                                                                                             | 20         | 35                       | 15   | dBµV                  |
| THD                 | Total Harmonic Distortion                      | $V_{INRF} = 74 \text{ dB}\mu\text{V}, m = 0.8$<br>m = 0.3<br>V_{INRF} = 120 db $\mu\text{V}, m = 0.8$<br>m = 0.3 | Pr         | 0.5<br>0.3<br>1.0<br>0.3 | d    | %                     |
| V <sub>37</sub>     | Output level                                   | V <sub>INRF</sub> = 74 dBµV                                                                                      |            | 220                      |      | mV <sub>RM</sub><br>S |
| V <sub>34</sub>     | Output level                                   | V <sub>INRF</sub> = 74 dBµ n                                                                                     | 61         | 190                      |      | mV <sub>RM</sub><br>S |
| V <sub>3</sub>      | Min. RF AGC threshold<br>Max. RF AGC threshold | AMAGC<br>Wide                                                                                                    | 1          | 82<br>98.8               |      | dBμV<br>dBμV          |
| V <sub>58</sub>     | Min. IF AGC threshold<br>Max. IF AGC threshold | A'.MA.GC<br>Middle                                                                                               |            | 80.1<br>96.8             |      | dΒμV<br>dBμV          |
| V <sub>3</sub>      | Min. IF AGC thresho'a<br>Max. IF AGC threshold | DAGC<br>Narrow                                                                                                   |            | 32.6<br>80.7             |      | dBμV<br>dBμV          |
| R <sub>63OUT</sub>  | Output impodance                               | 51                                                                                                               |            | 100                      |      | kΩ                    |
| R <sub>40OUT</sub>  | Ouipurinpedance                                | AMSEEK = 0                                                                                                       |            | 150                      |      | kΩ                    |
| R <sub>400</sub> JT | Output impedance                               | AMSEEK = 1                                                                                                       |            | 5                        |      | kΩ                    |
| AGC Vol             | tage Driver Output                             |                                                                                                                  |            |                          |      |                       |
| V <sub>4</sub>      | Max. AGC output voltage                        |                                                                                                                  | 3.5        |                          |      | V                     |
| V <sub>4</sub>      | Min. AGC output voltage                        |                                                                                                                  |            |                          | 0.5  | V                     |
| 14                  | AGC current                                    |                                                                                                                  |            | 100                      |      | μΑ                    |
| AGC PIN             | Diode Driver Output                            |                                                                                                                  |            |                          |      | l                     |
| I <sub>64</sub>     | AGC driver current                             |                                                                                                                  |            | 1.5                      |      | mA                    |
| AM Mixer            | 1 (10.7MHz)                                    | 1                                                                                                                | 1          |                          | 1    | 1                     |
| R <sub>IN</sub>     | Input impedance                                |                                                                                                                  |            | 1.2                      |      | kΩ                    |
| IP3                 | 3rd order intercept point                      |                                                                                                                  |            | 140                      |      | dBµV                  |
| F                   | Noise figure                                   |                                                                                                                  |            | 7                        |      | dB                    |

| 57 |
|----|
|    |

 $T_{amb} = +25^{\circ}C, V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = V_{CCMIX2} = 8.5V, f_{RF} = 1MHz, f_{MOD} = 400Hz at 30\%$ AMf<sub>IF1</sub> = 10.7MHz, f<sub>IF2</sub> = 450kHz, f<sub>xtal</sub> = 10.25MHz, in test or application circuit, (unless otherwise noted, V<sub>inRF</sub>) antenna input).

| Symbol             | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Condition           | Min. | Тур.     | Max.     | Unit |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|----------|----------|------|
| А                  | Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |      | 6        |          | dB   |
| C <sub>min</sub>   | Min. capacitance step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IF1T                     |      | 0.55     |          | pF   |
| C <sub>max</sub>   | Max. capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IF1T                     |      | 8.25     |          | pF   |
| C <sub>61-62</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IF1T                     |      | 2        |          | pF   |
| AM Mixer           | 2 (450kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |      |          | 10       | 5    |
| R <sub>IN</sub>    | Input impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dependent on application |      | 5        | 775      | kΩ   |
| IP3                | 3rd order intercept point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |      | 1-17     |          | dBµV |
| F                  | Noise figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 20   | 12       | 10       | dB   |
| А                  | Max. gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mixer2 tank output       |      | 15       | 15       | dB   |
| ΔΑ                 | Gain control range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1010                     |      | 20       | <b>X</b> | dB   |
| C <sub>min</sub>   | Min. cap step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IF2T                     | 5    | 1.6      |          | pF   |
| C <sub>max</sub>   | Мах. сар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IF2T                     |      | 24       |          | pF   |
| C <sub>55-56</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IF2T                     | 1    | 2        |          | pF   |
| ELECTRI            | CAL CHARACTERISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI absolu                | I    | 1        | I        |      |
| 0                  | Demonstration of the second seco | Test Condition           |      | <b>T</b> |          | 11   |

| Symbol                 | Paramete.                     | Test Condition           | Min. | Тур.  | Max.        | Unit  |
|------------------------|-------------------------------|--------------------------|------|-------|-------------|-------|
| ADDITIO                | NAL PARAMETFF S               |                          |      |       |             | 1     |
| Outputs                | of Tuning Vູ ທີ່ເສຍ(TV1, TV2) | 51                       |      |       |             |       |
| Vout                   | Oupurvoltage                  | TVR,TVO                  | 1    |       | VCC3-<br>1V | V     |
| Four                   | Output impedance              |                          |      | 20    |             | kΩ    |
| Xtal Refe              | rence Oscillator              | 1                        |      | 1     |             | 1     |
| fLO                    | Reference frequency           | C <sub>Load</sub> = 15pF |      | 10.25 |             | MHz   |
| CStep                  | Min. cap step                 | XTAL                     |      | 0.6   |             | pF    |
| C <sub>max</sub>       | Мах. сар                      | XTAL                     |      | 19.4  |             | pF    |
| $\Delta f/f$           | Freq. deviation versus VCC2   | $\Delta V_{CC2} = 1 V$   |      | 1.5   |             | ppm/\ |
| $\Delta f/f$           | Freq. deviation versus temp   | -40°C < T < +85°C        |      | 0.2   |             | ppm/k |
| I <sup>2</sup> C-Bus i | nterface                      | 1                        |      |       |             |       |
| fSCL                   | Clock frequency               |                          |      |       | 400         | kHz   |
| VIL                    | Input low voltage             |                          |      |       | 1           | V     |

57

12/41

| l <sub>IN</sub> In  |                                | Test Condition                                          | Min.         | Тур.              | Max.       | Unit |
|---------------------|--------------------------------|---------------------------------------------------------|--------------|-------------------|------------|------|
|                     | nput high voltage              |                                                         | 3            |                   |            | V    |
| V <sub>O</sub> O    | nput current                   |                                                         | -5           |                   | 5          | μA   |
|                     | Output voltage SDA acknowledge | I <sub>O</sub> = 1.6mA                                  |              |                   | 0.4        | V    |
| oop Filter          | Input/Output                   |                                                         |              | I                 |            |      |
| -l <sub>IN</sub> In | nput leakage current           | V <sub>IN</sub> = GND, PD <sub>OUT</sub> = Tristate     | -0.1         |                   | 0.1        | μA   |
| l <sub>IN</sub> In  | nput leakage current           | V <sub>IN</sub> = VREF1<br>PD <sub>OUT</sub> = Tristate | -0.1         |                   | 0.1        | μΑ   |
| V <sub>OL</sub> O   | Output voltage Low             | I <sub>OUT</sub> = -0.2mA                               |              | 0.05              | <u>ر</u> ک | Γ v  |
| V <sub>OH</sub> O   | Dutput voltage High            | I <sub>OUT</sub> = 0.2mA                                | VCC3<br>-0.5 | VC.C.3<br>- 1.0.7 |            | V    |
| I <sub>OUT</sub> O  | Output current, sink           | $V_{OUT} = 1V$ to $V_{CC3}$ -1V                         | 2/           |                   | 10         | mA   |
| I <sub>OUT</sub> O  | Output current, source         | $V_{OUT} = 1V$ to $V_{CC3}$ -1V                         | -10          |                   | CV)        | mA   |
| /oltage Co          | ntrolled Oscillator (VCO)      | 00                                                      |              | 0,                |            | •    |
| VCOmin M            | Iinimum VCO frequency          | 205                                                     | 50           |                   |            | MH   |
| VCOmax M            | laximum VCO frequency          | 0 * 20                                                  |              |                   | 200        | MH   |
| C/N C               | Carrier to Noise               | 1l'Hz offset                                            |              | 85                |            | dBo  |
| STOP Out            | put                            | 5 50                                                    |              |                   |            |      |
| V <sub>24</sub> 0   | Output voltage low             | I <sub>24</sub> = -20μA                                 |              |                   | 0.2        | V    |
| V <sub>24</sub> 0   | Dutput voltage hign            | I <sub>24</sub> = 20μA                                  | 3            |                   |            | V    |
| V <sub>46</sub> IF  | F counter Sensitivity          | Antenna input                                           |              | 6                 |            | dBµ  |

57

#### 1 FUNCTIONAL DESCRIPTION

#### 1.1 FM Section

#### 1.2 Mixer1, AGC and 1.IF

Mixer1 is a wide dynamic range stage with low noise and large input signal performance. The mixer1 tank can be adjusted by software (IF1T). The AGC operates on different sensitivities and bandwidths (FMAGC) in order to improve the input sensitivity and dynamic range (keying AGC). The output signals of AGC are controlled voltage and current for preamplifier and prestage pin diode attenuator. (look at Figure 4)

Two 10.7MHz programmable amplifiers (IFG1, IFG2) correct the IF ceramic insertion loss and the costumer level plan application.

#### 1.3 Mixer2, Limiter and Demodulator

In this 2. mixer stage the first 10.7MHz IF is converted into the second 450kHz IF. A multi-stage limiter generates signals for the complete integrated demodulator without external tank. MPX output DC offset compensation is possible by software (DEM).

#### **1.4 Quality Detection and ISS** (look at Figure 2)

#### Fieldstrength

Parallel to mixer2 input a 10.7MHz limiter generates a signal for digital IF counter and a fieldstrength output signal. This internal unweighted fieldstrength is used for keying AGC, cdiacent channel and multipath detection and is available at PIN14 (FSU) after +6dB buffer stage. The behaviour of this output signal can be corrected for DC offset (SL) and slope (SMSL). The internal generated unweighted fieldstrength is filtered at PIN35 and used for softmute function and generation of ISS filter switching signal for weak input level (sm).

#### Adjacent Channel Detector

The input of the adjacent channel detector is AC coupled from internal unweighted fieldstrength. A programmable highpass or bandpass (ACF) and amplifier (ACG) as well as rectifier determines the influences. This voltage is compared with adjustable comparator1 thresholds (ACWTH, ACNTH). The output signal of this comparator generates a DC level at PIN15 by programmable time constant. Time control (TISS) for a present adjacent channel is made by charge and discharge current after comparator1 in an external capacitance. The charge current is fixed and the discharge current is controlled by I<sup>2</sup>C Bus. This level produces digital signals (ac, ac+) in an additional comparator1. The adjacent channel information is available as analog output signal after rectifier and +8dB output b.ther.

#### Multir at' Detector

Tige input of the multipath detector is AC coupled from internal unweighted fieldstrength. A programmable bandpass (MPF) and amplifier (MPG) as well as rectifier determines the influences. This voltage is compared with an adjustable comparator2 thresholds (MPTH). The output signal of this comparator2 is used for the "Milano" effect. In this case the adjacent channel detection is switched off. The "Milano" effect is selectable by I<sup>2</sup>C Bus (MPOFF). The multipath information is available as analog output signal after rectifier and +8dB output buffer.

#### 450kHz IF Narrow Bandpass Filter (ISS filter)

The device gets an additional second IF narrow bandpass filter for suppression noise and adjacent channel signal influences. This narrow filter has three switchable bandwidthes, narrow range of 80kHz, mid range of 120kHz and 30KHz for weather band information. Without ISS filter the IF bandwidth (wide range) is defined only by ceramic filter chain. The filter is switched in after mixer2 before 450kHz limiter stage. The centre frequency and matching to the demodulator center frequency can be fine adjusted (AISS) by software..

#### **Deviation Detector**

In order to avoid distortion in audio output signal the narrow ISS filter is switched OFF for present overdeviation.



Hence the demodulator output signal is detected. A lowpass filtering and peak rectifier generates a signal that is defined by software controlled current (TDEV) in an external capacitance. This value is compared with a programmable comparator3 thresholds (DWTH, DTH) and generates two digital signals (dev, dev+).

#### **ISS Switch Logic**

All digital signals coming from adjacent channel detector, deviation detector and softmute are acting via switching matrix on ISS filter switch. The IF bandpass switch mode is controlled by software (ISSON, ISS30, ISS80, ISSCTL). The switch ON of the IF bandpass is also available by manipulation of the voltage at PIN15. Two application modes are available (APPM). The conditions are described in table 37.

#### 1.5 Soft Mute Control

The external fieldstrength signal at PIN 35 is the reference for mute control. The startpoint, mute depth and slope are programmable (SMTH, SMD, SLOPE) in a wide range. The time constant is defined by external capacitance. Additional adjacent channel mute function is supported. A highpass filter with -3dB threshold flequency of 100kHz, amplifier and peak rectifier generates an adjacent noise signal from MPX output with the same time constant for softmute. This value is compared with comparator5 thresholds (ACM). For present strong adjacent channel the MPX signal is attenuated typical 6dB.

#### 1.6 AM Section

The upconversion mixer1 is combined with a gain control circuit 1 sensing three input signals, narrow band information at PIN 39, upconversion signal at PIN 58 and wide band information at PIN 3. This gain control circuit gives two output signals. The first one is a current for pin diode attenuator and the second one is a voltage for preamplifier. It is possible to put in a separate narrow bandpess ulter before mixer2 at PIN 58. The intervention point for first AGC (AMAGC) is programmable by software.

The oscillator frequency for mixer1 is generated by dividing the FM VCO frequency (AMD).

In mixer2 the IF1 is downconverted into the IF2 450kHz. Before the output signal reaches the 450kHz tank an attenuator for IF gain control 2 is passed Mixer1 and mixer2 tanks are software controlled adjustable (IF1T, IF2T).

After filtering by ceramic filter a 450 k 47 amplifier with a gain control 3 is included. The gain control 2 and 3 are the second AGC and programmable too by software (DAGC). In order to avoid an oscillation in intervention point it is important to know that the DAGC threshold has to be smaller than AMAGC!

The demodulator is a peak detector. A further time constant with capacitor at pin40 produces a DC AGC reference voltage dependent on input signal. The time constant is switchable by ratio of 30. This is necessary for the station search function. The switching is software controlled (AMSEEK).

An internal comparator compares the AGC voltage with a programmable reference (AMSS). Consequently it is possible to generate a seekstop impulse over a defined range.

A separate output is available for AMIF stereo or a permanent seek stop signal(SSTSEL).

#### 1.7 PLL and IF Counter Section

#### PLL Frequency Synthesizer Block

This part contains a frequency synthesizer and a loop filter for the radio tuning system. Only one VCO is required to build a complete PLL system for FM and AM upconversion. For auto search stop operation an IF counter system is available.

The counter works in a two stages configuration. The first stage is a swallow counter with a two modulus (32/33) precounter. The second stage is an 11-bit programmable counter.

The circuit receives the scaling factors for the programmable counters and the values of the reference frequencies via an I<sup>2</sup>C-Bus interface. The reference frequency is generated by an adjustable internal (XTAL) oscillator followed by the reference divider. The reference and step-frequencies are free selectable (RC, PC).

Output signals of the phase detector are switching the programmable current sources. The loop filter integrates



their currents to a DC voltage.

The values of the current sources are programmable by 6 bits also received via the I<sup>2</sup>C Bus (A, B, CURRH, LPF). To minimize the noise induced by the digital part of the system, a special guard area is implemented.

The loop gain can be set for different conditions by setting the current values of the chargepump generator.

#### **Frequency Generation for Phase Comparison**

The RF signals applies a two modulus counter (32/33) pre-scaler, which is controlled by a 5-bit divider(A). The 5-bit register (PC0 to PC4) controls this divider. In parallel the output of the prescaler connects to an 11-bit divider(B). The 11-bit PC register (PC5 to PC15) controls this divider

Dividing range:  $f_{OSC} = (R+1) \times f_{REF}$   $f_{VCO} = [33 \times A + (B + 1 - A) \times 32] \times f_{REF}$   $f_{VCO} = (32 \times B + A + 32) \times f_{REF}$ Important: For correct operation:  $A \le 32$ ;  $B \ge A$ 

#### **Three State Phase Comparator**

The phase comparator generates a phase error signal according to phase dimensions between  $f_{SYN}$  and  $f_{REF}$ . This phase error signal drives the charge pump current generator.

#### **Charge Pump Current Generator**

This system generators signed pulses of current. The phase or or signal decides the duration and polarity of those pulses. The current absolute values are programmable by A register for high current and B register for low current.

#### **Inlock Detector**

Switching the chargepump in low current niccle can be done either via software or automatically by the inlock detector, by setting bit LDENA to "1"

After reaching a phase difference of 10 - 40nsec and a delay of some times 1/f<sub>REF</sub>, the chargepump is forced in low current mode. A new P L divider alternation by I<sup>2</sup>C-Bus will switch the chargepump in the high current mode.

Few programmable µ'ase errors (D0, D1) are available for inlock detection

The count of cotocted inlock informations, to release the inlock signal is adjustable (D2, D3), to avoid a switching to low current ouring a frequency jump.

#### Low Noise CMOS Op-amp

In internal voltage divider at pin VREF2 connects the positive input of the low noise op-amp. The charge pump output connects the negative input. This internal amplifier in cooperation with external components can provide an active filter. The negative input is switchable to three input pins, to increase the flexibility in application. This feature allows two separate active filters for different applications.

A logical "0" in the LPF register activates PIN LPFM, otherwise PIN LPAM is active. While the high current mode is activated LPHC is switched on.

#### **IF Counter Block**

The input signal for FM and AM upconversion is the same 10.7MHz IF level after limiter. The grade of integration is adjustable by eight different measuring cycle times. The tolerance of the accepted count value is adjustable, to reach an optimum compromise for search speed and precision of the evaluation.

For the FM range the center frequency of the measured count value is adjustable in 32 steps, to get the possibility of fitting the IF-filter tolerance. In the AM upconversion range an IF frequency of 10.689MHz to 10.720MHz with 1kHz steps is available.

16/41

57

#### **The IF-Counter Mode**

The IF counter works in 2 modes controlled by IFCM register.

#### Sampling Timer

A sampling timer to generate the gate signal for the main counter is build with a 14-bit programmable counter (IRC). In FM mode a 6.25kHz, in AM mode a 1kHz basically signal is generated. This is followed by an asynchronous divider to generate several sampling times.

#### **Intermediate Frequency Main Counter**

This counter is a 11 - 21-bit synchronous autoreload down counter. Five bits (CF) are programmable to have the possibility for an adjust to the frequency of the IF-filter. The counter length is automatic adjusted to the chosen sampling time and the counter mode (FM, AM-UPC).

At the start the counter will be loaded with a defined value which is an equivalent to the divider value (t<sub>Sample</sub> x f<sub>IF</sub>).

If a correct frequency is applied to the IF counter frequency input at the end of the sampling time the main counter is changing its state from 0h to 1FFFFh.

-OW te This is detected by a control logic and an external search stop output is changing from LOW to HIGH. The frequency range inside which a successful count result is adjustable by the EW Lits.

#### $t_{TIM} = (IRC + 1) / f_{OSC}$

 $t_{CNT} = (CF + 1697) / f_{IF}$ FM mode

 $t_{CNT} = (CF + 10689) / f_{IF}$ AM up conversion mode

Counter result succeeded:

t<sub>TIM</sub> ≥ t<sub>CNT</sub> - t<sub>ERR</sub>

 $t_{TIM} \leq t_{CNT} + t_{ERF}$ 

Counter result failed:

T. M > CNT + tERR

ttim < tcnt - tfrr

t<sub>TIM</sub> = IF timer cycle time

t<sub>CNT</sub> = IF counter cycle time

t<sub>ERR</sub> = discrimination window (controlled by the EW registers)

The IF counter is only started by inlock information from the PLL part. It is enabled by software (IFENA).

#### Adjustment of the Measurement Sequence Time

The precision of the measurements is adjustable by controlling the discrimination window. This is adjustable by programming the control registers EW0 to EW2.

The measurement time per cycle is adjustable by setting the Register IFS0 - IFS2.

#### Adjust of the Frequency Value

The center frequency of the discrimination window is adjustable by the control register CF0 to CF4.



#### 1.8 I<sup>2</sup>C-Bus Interface

The TDA 7511 supports the I<sup>2</sup>C-Bus protocol. This protocol defines any device that sends data onto the bus as a transmitter, and the receiving device as the receiver. The device that controls the transfer is a master and device being controlled is the slave. The master will always initiate data transfer and provide the clock to transmit or receive operations.

#### **Data Transition**

Data transition on the SDA line must only occur when the clock SCL is LOW. SDA transitions while SCL is HIGH will be interpreted as START or STOP condition.

#### **Start Condition**

A start condition is defined by a HIGH to LOW transition of the SDA line while SCL is at a stable HIGH level. This "START" condition must precede any command and initiate a data transfer onto the bus. The "DA 7511 continuously monitors the SDA and SCL lines for a valid START and will not response to any command it this condition has not been met.

#### **Stop Condition**

A STOP condition is defined by a LOW to HIGH transition of the SDA while the SCL line is at a stable HIGH level. This condition terminates the communication between the devices and forces the bus-interface of the TDA 7511 into the initial condition.

#### Acknowledge

Indicates a successful data transfer. The transmitter will release the bus after sending 8 bits of data. During the 9th clock cycle the receiver will pull the SDA line to LOW level to indicate it receive the eight bits of data.

#### Data Transfer

During data transfer the TDA 7511 samples the SDA line on the leading edge of the SCL clock. Therefore, for proper device operation the SDA line  $\pi_{1}$  us the stable during the SCL LOW to HIGH transition.

#### **Device Addressing**

To start the communication between two devices, the bus master must initiate a start instruction sequence, followed by an eight bi word corresponding to the address of the device it is addressing.

The most significant 6 bits of the slave address are the device type identifier.

The TDA 7511 device type is fixed as "110001".

The next significant bit is used to address a particular device of the previous defined type connected to the bus.

The state of the hardwired PIN 41 defines the state of this address bit. So up to two devices could be connected on the same bus. When PIN 41 is connected to VCC2 the address bit "1" is selected. In this case the AM part doesn't work. Otherwise the address bit "0" is selected (FM and AM is working). Therefor a double FM tuner concept is possible.

The last bit of the start instruction defines the type of operation to be performed:

- When set to "1", a read operation is selected

- When set to "0", a write operation is selected

The TDA 7511 connected to the bus will compare their own hardwired address with the slave address being transmitted, after detecting a START condition. After this comparison, the TDA 7511 will generate an "acknowledge" on the SDA line and will do either a read or a write operation according to the state of R/W bit.

#### Write Operation

Following a START condition the master sends a slave address word with the R/W bit set to "0". The TDA 7511 will generate an "acknowledge" after this first transmission and will wait for a second word (the word address field). This 8-bit address field provides an access to any of the 32 internal addresses. Upon receipt of the word address the TDA 7511 slave device will respond with an "acknowledge". At this time, all the following words transmitted to the TDA 7511 will be considered as Data. The internal address will be automatically incremented. After each word receipt the TDA 7511 will answer with an "acknowledge".

#### **Read Operation**

IF the master sends a slave address word with the R/W bit set to "1", the TDA 7511 will transit one 8-bit data word. This data word includes the following informations:

bit0 (ISS filter, 1 = ON, 0 = OFF)

bit1 (ISS filter bandwidth, 1 = 80kHz, 0 = 120kHz)

bit2 (MPOUT,1 = multipath present, 0 = no multipath)

bit3 (1 = PLL is locked in , 0 = PLL is locked out).

bit4 (fieldstrength indicator, 1 = lower as softmute threshold, 0 = higher as softmute threshold)

Josur Product bit5 (adjacent channel indicator, 1 = adjacent channel present, 0 = no adjacer c ciannel)

bit6 (deviation indicator, 1 = strong overdeviation present, 0 = no strong overdeviation)

bit7 (deviation indicator, 1 = overdeviation present, 0 = no overdeviation).

#### **Software Specification** 2

The interface protocol comprises:

- start condition (S)
- chip address byte
- subaddress byte
- sequence of data (N bytes + Acknowledge)

#### - stop condition (P) Figure 1. CHIP ADDRESS SUBADDRESS DATA1 - DATAn MSB LSB MSB LSB MSB LSB s 1 0 0 0 Х ACK Т Т A0 ACK DATA ACK Ρ 1 0 1 A3 A1 ACK = Acknowledge = Start S P = Stop = Pagemode = R/W Bit Х 99AT0054 19/41

### 2.1 Address Organization

#### Table 1.

| Function       | Addr | 7      | 6        | 5       | 4       | 3       | 2       | 1           | 0      |
|----------------|------|--------|----------|---------|---------|---------|---------|-------------|--------|
| CHARGEPU<br>MP | 0    | LPF    | CURRH    | B1      | B0      | A3      | A2      | A1          | A0     |
| LOCKDET        | 1    | LDENA  | D3       | D2      | D1      | D0      | AMON    | TEST3       | RES2   |
| PLL            | 2    | PC7    | PC6      | PC5     | PC4     | PC3     | PC2     | PC1         | PC0    |
| COUNTER        | 3    | PC15   | PC14     | PC13    | PC12    | PC11    | PC10    | PC9         | PC8    |
| PLL REF        | 4    | RC7    | RC6      | RC5     | RC4     | RC3     | RC2     | RC1         | RC0    |
| COUNTER        | 5    | RC15   | RC14     | RC13    | RC12    | RC11    | RC10    | RC9         | RC8    |
| TV1            | 6    | TV011  | TV010    | TVR15   | TVR14   | TVR13   | TVR12   | TVR11       | TV.R10 |
| TV2            | 7    | TV021  | TV020    | TVR25   | TVR24   | TVR23   | TVR22   | TVR21       | TV/R20 |
| IFC CTRL 1     | 8    | TV013  | TV012    | TV023   | TV022   | IFENA   | EW2     | FV '1       | EW0    |
| IFC CTRL 2     | 9    | IFS2   | IFS1     | IFS0    | CF4     | CF3     | CF2     | CP1         | CF0    |
| IF REF CNT1    | 10   | IRC7   | IRC6     | IRC5    | IRC4    | IRC3    | IRC     | IRC1        | IRC0   |
| IF REF CNT2    | 11   | IFCM1  | IFCM0    | IRC13   | IRC12   | IRC11   | 112010  | IRC9        | IRC8   |
| IF1/FMAGC      | 12   | -      | FMAGC2   | FMAGC1  | FMAGC0  | IFG21   | JFG20   | IFG11       | IFG10  |
| DEM ADJ        | 13   | DNB1   | DNB0     | DEM5    | DEM4    | DE1.13  | DEM2    | DEM1        | DEM0   |
| QUALITY AC     | 14   | ACNTH1 | ACNTH0   | ACWTH2  | ACWTH1  | лс∵∕тно | ACG     | ACF         | ISS30  |
| QUALITY MP     | 15   | MPAC   | APPM2    | APPM1   | MPT H1  | MPTH0   | MPG     | MPF         | MPOFF  |
| QUALITYDEV     | 16   | -      | DTH1     | DTH0    | CW.TH1  | DWTH0   | TDEV2   | TDEV1       | TDEV0  |
| QUALITYISS     | 17   | AISS1  | AISS0    | TISS2   | TISS1   | TISS0   | ISS80   | ISSON       | ISSCTL |
| AM CTL1        | 18   | DAGC3  | DAGC2    | DAGC1   | DAGC0   | AMD1    | AMD0    | AMST        | AMSEEK |
| AM CTL2        | 19   | AMSS3  | AMSS2    | AI ISS1 | AMSS0   | AMAGC3  | AMAGC2  | AMAGC1      | AMAGC0 |
| MUTE1          | 20   | SMCTH1 | SMICT.HO | SLOPE   | MENA    | SMD3    | SMD2    | SMD1        | SMD0   |
| MUTE2          | 21   | ACM3   | .\CM2    | ACM1    | ACM0    | SMTH3   | SMTH2   | SMTH1       | SMTH0  |
| SLIDER         | 22   |        | -        | SL5     | SL4     | SL3     | SL2     | SL1         | SL0    |
| TANK ADJ       | 23   | 1-1-13 | IF1T2    | IF1T1   | IF1T0   | IF2T3   | IF2T2   | IF2T1       | IF2T0  |
| XTAL ADJ       | 24   | -      |          | CLKSEP  | XTAL4   | XTAL3   | XTAL2   | XTAL1       | XTAL0  |
| TESTCNTRI      | 25   | ISSIN  | SMSL     | SSTSEL  | ISSCOFF | DEMOFF  | 450LOFF | TESTOU<br>T | TESTIN |
| TEST           | 26   | - 30   | -        | -       | -       | -       | DIV2    | DIV1        | DIV0   |
| TEST MODE1     | 27   | OUT7   | OUT6     | OUT5    | OUT4    | OUT3    | OUT2    | OUT1        | OUT0   |
| TEST MODE2     | 28   | -      | -        | TINMP   | TINAC   | OUT11   | OUT10   | OUT9        | OUT8   |

## 2.2 Control Register Function

Table 2.

| Register Name              | Function                                       |  |  |  |  |  |  |
|----------------------------|------------------------------------------------|--|--|--|--|--|--|
| A Charge pump high current |                                                |  |  |  |  |  |  |
| ACF                        | Adjacent channel filter select                 |  |  |  |  |  |  |
| ACG                        | Adjacent channel filter gain                   |  |  |  |  |  |  |
| ACM                        | Threshold for startpoint adjacent channel mute |  |  |  |  |  |  |
| ACNTH                      | Adjacent channel narrow band threshold         |  |  |  |  |  |  |
| ACWTH                      | Adjacent channel wide band threshold           |  |  |  |  |  |  |
| AISS                       | ISS filter fine adjust                         |  |  |  |  |  |  |

20/41

**A7/** 

### Table 2. (continued)

| Register Name | Function                                                 |
|---------------|----------------------------------------------------------|
| AMAGC         | AM wide band AGC threshold                               |
| AMD           | AM prescaler                                             |
| AMON          | AM-FM switch                                             |
| AMSEEK        | Switch time constant for AM seek                         |
| AMSS          | AM seek stop threshold                                   |
| AMST          | AM stereo select                                         |
| APPM          | Application mode quality detection                       |
| В             | Charge pump low current                                  |
| CF            | Center frequency IF counter                              |
| CLKSEP        | Clock separation (only for testing)                      |
| CURRH         | Set current high charge pump                             |
| D             | Inlock phase error and delay time for lock detector      |
| DAGC          | AM narrow band AGC threshold                             |
| DEM           | Demodulator offset                                       |
| DEMOFF        | Demodulator clock "OFF" (only for testing)               |
| DNB           | Demodulator noise blanking                               |
| DIV           | Divider ratio for reference frequency (only for feeling) |
| DTH           | Deviation detector threshold for ISS filter CrFr         |
| DWTH          | Deviation detector threshold for 193 filter narrow/wide  |
| EW            | Frequency error window IF counter                        |
| FMAGC         | FM AGC threshold                                         |
| IF1T          | FM/AM mixer1 tarts adjust                                |
| IF2T          | AM mixer2 lank adjust                                    |
| IFCM          | IF counter mode                                          |
| IFENA         | IF courser enable                                        |
| IFG           | , I⊢ î amplifier gain (10.7MHz)                          |
| IFS           | IF counter sampling time                                 |
| IRC           | IF reference counter                                     |
| ISSCOFI       | ISS filter clock "OFF" (only for testing)                |
| เรกอาบ        | ISS filter control                                       |
| ISilin        | Test input for ISS filter                                |
| ISSON         | ISS filter "ON"                                          |
| ISS30         | ISS filter 30KHz weather band                            |
| ISS80         | ISS filter narrow/mid switch                             |
| LDENA         | Lock detector enable                                     |
| LPF           | Loop filter input select                                 |
| MENA          | Softmute enable                                          |
| MPAC          | Adjacent channel control by multipath                    |
| MPOFF         | Multipath control "OFF"                                  |
| MPF           | Multipath filter frequency                               |
| MPG           | Multipath filter gain                                    |
| MPTH          | Multipath threshold                                      |
| OUT           | Test output (only for testing)                           |

#### Table 2. (continued)

| Register Name | Function                                                 |
|---------------|----------------------------------------------------------|
| PC            | Counter for PLL (VCO frequency)                          |
| RC            | Reference counter PLL                                    |
| RES           | Reservation                                              |
| SL            | S meter slider threshold                                 |
| SLOPE         | Softmute slope select                                    |
| SMCTH         | Softmute capacitor threshold for ISS "ON"                |
| SMD           | Softmute depth threshold                                 |
| SMSL          | S meter slope                                            |
| SMTH          | Softmute startpoint threshold                            |
| SSTSEL        | Search stop select for continuous signal                 |
| TEST3         | Testing PLL/IFC (only for testing)                       |
| TESTOUT       | Switch FSW output to TEST output (only for testing)      |
| TESTIN        | Switch FSU input to TEST input (only for testing)        |
| TDEV          | Time constant for deviation detector                     |
| TINAC         | Test input adjacent channel (only for testing)           |
| TINMP         | Test input multipath(only for testing)                   |
| TISS          | Time constant for ISS filter "ON"/"OFF"                  |
| TVR           | Tuning voltage for prestage proportional referred to PLL |
| TVO           | Tuning voltage offset for prestage                       |
| XTAL          | Xtal frequency adjust                                    |
| 450LOFF       | 450kHz limiter "OFF (only for testing)                   |
| Subaddress    | inction obsor                                            |
| Table 3.      |                                                          |

#### Subaddress

#### Table 3.

| MSB |         |    | 0        |    | LSB |    | LSB | Function            |
|-----|---------|----|----------|----|-----|----|-----|---------------------|
| T2  | T1      |    | .4       | A3 | A2  | A1 | A0  | Function            |
|     |         | KC | 0        | 0  | 0   | 0  | 0   | Charge pump control |
|     |         |    | 0        | 0  | 0   | 0  | 1   | PLL lock detector   |
| C   | $O^{-}$ |    | -        | Ð  | -   | -  | -   | -                   |
|     | 1       |    | 1        | 1  | 1   | 0  | 0   | Test mode 2         |
|     |         | 0  |          |    |     |    |     | Page mode "OFF"     |
|     | 10      | 1  | <i>v</i> |    |     |    |     | Page mode enable    |

**A7/** 

Note: 1. T1, T2 used for testing, in application mode they have to be "0".

#### 2.3 Data Byte Specification

#### Addr 0 Charge Pump Control

#### Table 4.

| MSB |    |    |    |    |    |    | LSB | Function             |
|-----|----|----|----|----|----|----|-----|----------------------|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function             |
|     |    |    |    | 0  | 0  | 0  | 0   | High current = 0mA   |
|     |    |    |    | 0  | 0  | 0  | 1   | High current = 0.5mA |
|     |    |    |    | 0  | 0  | 1  | 0   | High current = 1mA   |
|     |    |    |    | 0  | 0  | 1  | 1   | High current = 1.5mA |
|     |    |    |    | -  | -  | -  | -   | -                    |
|     |    |    |    | 1  | 1  | 1  | 1   | High current = 7.5mA |
|     |    | 0  | 0  |    |    |    |     | Low current = 0µA    |
|     |    | 0  | 1  |    |    |    |     | Low current = 50µA   |
|     |    | 1  | 0  |    |    |    |     | Low current = 100µA  |
|     |    | 1  | 1  |    |    |    |     | Low current = 150µA  |
|     | 0  |    |    |    |    |    |     | Select low current   |
|     | 1  |    |    |    |    |    |     | Select high current  |
| 0   |    |    |    |    |    |    |     | Select LPFM          |
| 1   |    |    |    |    |    |    |     | Select LP.M.         |

#### Addr 1 PLL Lock Detector

#### Table 5.

| 1<br>Addr<br>Table |    | Lock | Deteo | ctor |     | 10  |     | Select LP.M.                    |                        |
|--------------------|----|------|-------|------|-----|-----|-----|---------------------------------|------------------------|
| MSB                |    |      |       |      |     | 77- | LSB | Euro                            | ction                  |
| d7                 | d6 | d5   | d4    | d3   | a.? | d1  | d0  |                                 | Clion                  |
|                    |    |      |       |      |     | 0   | 0   | Not used, have to be 0, d1 only | / for testing          |
|                    |    |      | 5     |      | 0   |     |     | Select FM mode                  |                        |
|                    |    |      |       |      | 1   | *(  | וכ  | Select AM mode                  |                        |
|                    |    | ×C   | 0     | 0    |     |     | b   | PD phase difference threshold   | 10ns                   |
|                    | 10 |      | 0     | 1    |     |     |     |                                 | 20ns                   |
|                    | 07 |      | 1     | 0    | J.  |     |     |                                 | 30ns                   |
| 20                 |    |      | 1     | 1    |     |     |     |                                 | 40ns                   |
| P                  | 0  | 0    |       |      |     |     |     | Not valid                       |                        |
|                    | 0  | 1    |       |      |     |     |     | Activation delay                | 4 x 1/f <sub>REF</sub> |
|                    | 1  | 0    |       |      |     |     |     |                                 | 6 x 1/f <sub>REF</sub> |
| S                  | Y  | 1    |       |      |     |     |     |                                 | 8 x 1/f <sub>REF</sub> |
| 0                  |    |      |       |      |     |     |     | Lock detector doesn't control c | harge pump             |
| 1                  |    |      |       |      |     |     |     | Lock detector controls charge p | oump                   |

#### Addr 2 PLL Counter 1 (LSB)

#### Table 6.

| MSB |    |    |    |    |    |    | LSB | Function  |
|-----|----|----|----|----|----|----|-----|-----------|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function  |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | LSB = 0   |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | LSB = 1   |
| 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0   | LSB = 2   |
| -   | -  | -  | -  | -  | -  | -  | -   | -         |
| 1   | 1  | 1  | 1  | 1  | 1  | 0  | 0   | LSB = 252 |
| 1   | 1  | 1  | 1  | 1  | 1  | 0  | 1   | LSB = 253 |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 0   | LSB = 254 |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   | LSB = 255 |

#### Addr 3 PLL Counter 2 (MSB)

| 1             | 1  | 1    | 1      | 1     | 1  | 1               | 1   | LSB = 255   |
|---------------|----|------|--------|-------|----|-----------------|-----|-------------|
| Addr<br>Table |    | Cour | nter 2 | (MSB) | )  |                 |     | produces    |
| MSB           |    |      |        |       |    |                 | LSB | Function    |
| d7            | d6 | d5   | d4     | d3    | d2 | d1              | d0  | Gunction    |
| 0             | 0  | 0    | 0      | 0     | 0  | 0               | 0   | MSB = 0     |
| 0             | 0  | 0    | 0      | 0     | 0  | 0               | 1   | MSB = 250   |
| 0             | 0  | 0    | 0      | 0     | 0  | 1               | 0   | MS2 = 512   |
| -             | -  | -    | -      | -     | -  | -               | -   | -U' x0      |
| 1             | 1  | 1    | 1      | 1     | 1  | 0               | 0   | MSB = 64768 |
| 1             | 1  | 1    | 1      | 1     | 1  | 0               |     | MSB = 65024 |
| 1             | 1  | 1    | 1      | 1     | 1  | 1               | 0   | MSB = 65280 |
| 1             | 1  | 1    | 1      | 1     | 1  | $\mathcal{D}_1$ | 1   | MSB = 65536 |
|               |    |      |        |       |    |                 |     |             |

1

Note: 1. Swallow mode:  $f_{VCO}/f_{S'N} = \frac{1}{S} + MSB + 32$ 

## Addr 4 PLL Reference Counter 1 (LSB)

Table 8.

| Table        | 8.  | 3,6 |    |    | (  |    |     |           |
|--------------|-----|-----|----|----|----|----|-----|-----------|
| MSB          |     | 5   |    | ~  |    |    | LSB | Function  |
| ďĩ           | -26 | d5  | d4 | d3 | d2 | d1 | d0  | Function  |
| $\mathbf{O}$ | 0   | 0   | 0  | 0  | 0  | 0  | 0   | LSB = 0   |
| 0            | 0   | 0   | 0  | 0  | 0  | 0  | 1   | LSB = 1   |
| 0            | 0   | 0   | 0  | 0  | 0  | 1  | 0   | LSB = 2   |
|              | C,  | -   | -  | -  | -  | -  | -   | -         |
|              | 1   | 1   | 1  | 1  | 1  | 0  | 0   | LSB = 252 |
| 1            | 1   | 1   | 1  | 1  | 1  | 0  | 1   | LSB = 253 |
| 1            | 1   | 1   | 1  | 1  | 1  | 1  | 0   | LSB = 254 |
| 1            | 1   | 1   | 1  | 1  | 1  | 1  | 1   | LSB = 255 |

57

#### Addr 5 PLL Reference Counter 2 (MSB)

#### Table 9.

| MSB |    |    |    |    |    |    | LSB | Function    |
|-----|----|----|----|----|----|----|-----|-------------|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function    |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | MSB = 0     |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | MSB = 256   |
| 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0   | MSB = 512   |
| -   | -  | -  | -  | -  | -  | -  | -   | -           |
| 1   | 1  | 1  | 1  | 1  | 1  | 0  | 0   | MSB = 64768 |
| 1   | 1  | 1  | 1  | 1  | 1  | 0  | 1   | MSB = 65024 |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 0   | MSB = 65280 |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   | MSB = 65536 |

Note: 1.  $f_{OSC}/f_{REF} = LSB + MSB + 1$ 

# Addr 6, Addr7, Addr 8 TV1,2 (proportional and offset control referred to tuning voltage V28)

Table 10.

| ad | dr8 |    |    |    | ade | dr6                       |    |    |    | Function TV1 |
|----|-----|----|----|----|-----|---------------------------|----|----|----|--------------|
| d7 | d6  | d7 | d6 | d5 | d4  | d3                        | d2 | d1 | d0 | Function IV  |
| ad | dr8 |    |    |    | ade | dr7                       |    |    |    | Function TV2 |
| d5 | d4  | d7 | d6 | d5 | d4  | d3                        | d2 | d1 | d0 |              |
|    |     |    |    | 0  | 0   | 0                         | 0  | 0  | U  | TVR = 0      |
|    |     |    |    | 0  | 0   | 0                         | 0  | 0  | 1  | TVR = -1     |
|    |     |    |    | 0  | 0   | 0                         | 0  |    | 0  | TVR = -2     |
| -  | -   | -  | -  | -  | -   |                           |    |    |    | 05           |
|    |     |    |    | 0  | 1   | $\mathbf{D}_{\mathbf{i}}$ | 1  | 1  | 1  | TVR = -31    |
|    |     |    |    | 1  | U U | 0                         | 0  | 0  | 1  | TVR = +1     |
|    |     |    |    | 1  | 0   | 0                         | 0  | 1  | 0  | TVR = +2     |
| -  | -   | -  | 2- | -  | -   |                           | Z  | -  | -  | -            |
|    |     |    | 9  | 1  | 1   | 1                         | 1  | 1  | 1  | TVR = +31    |
| 0  | Û   | 5  | 0  |    | 5   |                           |    |    |    | TVO = 0      |
| 0  | 50  | 0  | 1  | 20 |     |                           |    |    |    | TVO = -1     |
| 0  | 0   | 1  | 0  |    |     |                           |    |    |    | TVO = -2     |
| -  | -   | X  | 0  | -  | -   | -                         | -  | -  | -  | -            |
| 0  | 1   | 1  | 1  |    |     |                           |    |    |    | TVO = -7     |
| 1  | 0   | 0  | 1  |    |     |                           |    |    |    | TVO = +1     |
| 1  | 0   | 1  | 0  |    |     |                           |    |    |    | TVO = +2     |
| Y  | -   | -  | -  | -  |     | -                         | -  | -  | -  | -            |
| 1  | 1   | 1  | 1  |    |     |                           |    |    |    | TVO = +7     |

Note: 1. TV1,2 = V28 + V28 \* TVR/128 + TVO \* 50mV TVR: -31, -30, ... 0 ... 30, 31 TVO: -7, -6, ... 0 ... 6, 7

57

#### Addr 8 IF Counter Control 1

#### Table 11.

| MSB |                                                                             |    |    |    |    |    | LSB | Function                                               |
|-----|-----------------------------------------------------------------------------|----|----|----|----|----|-----|--------------------------------------------------------|
| d7  | d6                                                                          | d5 | d4 | d3 | d2 | d1 | d0  | Function                                               |
|     |                                                                             |    |    |    | 0  | 0  | 0   | Not valid                                              |
|     |                                                                             |    |    |    | 0  | 0  | 1   | Not valid                                              |
|     |                                                                             |    |    |    | 0  | 1  | 0   | Not valid                                              |
|     |                                                                             |    |    |    | 0  | 1  | 1   | $\Delta f = 6.25 \text{kHz} (FM)1 \text{kHz} (AM UPC)$ |
|     |                                                                             |    |    |    | 1  | 0  | 0   | $\Delta f = 12.5 \text{kHz}$ (FM) 2kHz (AM UPC)        |
|     |                                                                             |    |    |    | 1  | 0  | 1   | $\Delta f = 25 \text{kHz}$ (FM) 4kHz (AM UPC)          |
|     |                                                                             |    |    |    | 1  | 1  | 0   | $\Delta f = 50 \text{kHz}$ (FM) 8kHz (AM UPC)          |
|     |                                                                             |    |    |    | 1  | 1  | 1   | Δf = 100kHz (FM)16kHz (AM UPC)                         |
|     |                                                                             |    |    | 0  |    |    |     | IF counter disable / stand by                          |
|     |                                                                             |    |    | 1  |    |    |     | IF counter enable                                      |
|     | 0 0   0 0   0 1   0 1   1 0   1 1   1 1   1 1   1 1   1 1   1 1   1 1   0 1 |    |    |    |    |    |     | ete Product(S)                                         |
| MSB |                                                                             |    |    |    |    |    | LSB | Function                                               |

#### Addr 9 IF Counter Control 2

| MSB |         |    |              |    |    |              | LSB      | Function                                                 |
|-----|---------|----|--------------|----|----|--------------|----------|----------------------------------------------------------|
| d7  | d6      | d5 | d4           | d3 | d2 | d1           | d0       | Function                                                 |
|     |         |    | 0            | 0  | 0  | 0            | 0        | fr.ente 10.60625MHz (FM)10.689MHz (AM UPC)               |
|     |         |    | 0            | 0  | 0  | 0            | 1        | f <sub>Cemer</sub> = 10.61250MHz (FM)10.690MHz (AM UPC)  |
| -   | -       | -  | -            | -  | -  |              | <u> </u> | -                                                        |
|     |         |    | 0            | 1  | 0  | <u>,   -</u> | 00       | f <sub>Center</sub> = 10.66875MHz (FM)10.699MHz (AM UPC) |
|     |         |    | 0            | 1  | 0  |              | 1        | f <sub>Center</sub> = 10.67500MHz (FM)10.700MHz (AM UPC) |
|     |         |    | 0            | 1  | 1  | 0            | 0        | f <sub>Center</sub> = 10.68125MHz (FM)10.701MHz (AM UPC) |
|     |         |    | 0            |    | 1  | 0            | 1        | f <sub>Center</sub> = 10.68750MHz (FM)10.702MHz (AM UPC) |
|     |         |    | C            | 1  | 1  | 1            | 0        | f <sub>Center</sub> = 10.69375MHz (FM)10.703MHz (AM UPC) |
|     |         | 20 | Û            | 1  | 1  | 1            | 1        | f <sub>Center</sub> = 10.70000MHz (FM)10.704MHz (AM UPC) |
|     | 10      |    | 1            | 0  | 0  | 0            | 0        | f <sub>Center</sub> = 10.70625MHz (FM)10.705MHz (AM UPC) |
|     | $\odot$ |    | 1            | 0  | 0  | 0            | 1        | f <sub>Center</sub> = 10.71250MHz (FM)10.706MHz (AM UPC) |
| 0.5 | -       | -  | $\mathbf{O}$ | -  | -  | -            | -        | -                                                        |
|     |         |    | 1            | 1  | 1  | 1            | 1        | f <sub>Center</sub> = 10.80000MHz (FM)10.720MHz (AM UPC) |
| 0   | 0       | 0  |              |    |    |              |          | t <sub>Sample</sub> = 20.48ms (FM)128ms (AM UPC)         |
| 0   | 0       | 1  |              |    |    |              |          | t <sub>Sample</sub> = 10.24ms (FM)64ms (AM UPC)          |
| 0   | 1       | 0  |              |    |    |              |          | t <sub>Sample</sub> = 5.12ms (FM)32ms (AM UPC)           |
| 0   | 1       | 1  |              |    |    |              |          | t <sub>Sample</sub> = 2.56ms (FM)16ms (AM UPC)           |
| 1   | 0       | 0  |              |    |    |              |          | t <sub>Sample</sub> = 1.28ms (FM)8ms (AM UPC)            |
| 1   | 0       | 1  |              |    |    |              |          | t <sub>Sample</sub> = 640μs (FM)4ms (AM UPC)             |
| 1   | 1       | 0  |              |    |    |              |          | t <sub>Sample</sub> = 320μs (FM)2ms (AM UPC)             |
| 1   | 1       | 1  |              |    |    |              |          | t <sub>Sample</sub> = 160μs (FM)1ms (AM UPC)             |

**A7/** 

#### Addr 10 IF Counter Reference (LSB)

#### Table 13.

| MSB |    |    |    |    |    |    | LSB | Function  |
|-----|----|----|----|----|----|----|-----|-----------|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function  |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0   | LSB = 0   |
| 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1   | LSB = 1   |
| 0   | 0  | 0  | 0  | 0  | 0  | 1  | 0   | LSB = 2   |
| -   | -  | -  | -  | -  | -  | -  | -   | -         |
| 1   | 1  | 1  | 1  | 1  | 1  | 0  | 0   | LSB = 252 |
| 1   | 1  | 1  | 1  | 1  | 1  | 0  | 1   | LSB = 253 |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 0   | LSB = 254 |
| 1   | 1  | 1  | 1  | 1  | 1  | 1  | 1   | LSB = 255 |

#### Addr 11 IF Counter Reference (MSB) and IF Counter Mode Select

| Table 14 | 4. |
|----------|----|
|----------|----|

| MSB |    |    | -       | -  |     |          | LSB | Function                        |
|-----|----|----|---------|----|-----|----------|-----|---------------------------------|
| d7  | d6 | d5 | d4      | d3 | d2  | d1       | d0  |                                 |
|     |    | 0  | 0       | 0  | 0   | 0        | 0   | MSB = 0                         |
|     |    | 0  | 0       | 0  | 0   | 0        | 1   | MSB = 25 o                      |
|     |    | 0  | 0       | 0  | 0   | 1        | 0   | MGE = 512                       |
|     |    | -  | -       | -  | -   | -        | -   |                                 |
|     |    | 1  | 1       | 1  | 1   | 0        | _1  | MSB = 15616                     |
|     |    | 1  | 1       | 1  | 1   |          | 29  | MSB = 15872                     |
|     |    | 1  | 1       | 1  | 1   | 1        | 1   | MSB = 16128                     |
| 0   | 0  |    |         |    |     | <u> </u> |     | Not valid                       |
| 0   | 1  |    |         |    |     |          |     | IF counter FM mode              |
| 1   | 0  |    |         |    |     |          | 5)  | Not valid                       |
| 1   | 1  |    |         |    |     |          |     | IF counter AM upconversion mode |
|     |    |    | SB + MS |    | 20. |          |     |                                 |

#### Addr 12 IF 1 and FM AGC

#### Table 15.

| MSB   |    |      |       |        |        |    | LSB | Function              |
|-------|----|------|-------|--------|--------|----|-----|-----------------------|
| d7    | d6 | d5   | d4    | d3     | d2     | d1 | d0  | Function              |
|       |    |      |       |        |        | 0  | 0   | IF1 gain1 9dB         |
|       |    |      |       |        |        | 0  | 1   | IF1 gain1 11dB        |
|       |    |      |       |        |        | 1  | 0   | IF1 gain1 13dB        |
|       |    |      |       |        |        | 1  | 1   | IF1 gain1 15dB        |
|       |    |      |       | 0      | 0      |    |     | IF1 gain2 9dB         |
|       |    |      |       | 0      | 1      |    |     | IF1 gain2 11dB        |
|       |    |      |       | 1      | 0      |    |     | IF1 gain2 13dB        |
|       |    |      |       | 1      | 1      |    |     | IF1 gain2 15dB        |
|       | 0  | 0    | 0     |        |        |    |     | AGC threshold 80dBµV  |
|       | 0  | 0    | 1     |        |        |    |     | AGC threshold 82dBµV  |
|       | 0  | 1    | 0     |        |        |    |     | AGC threshold 84dBµV  |
|       | 0  | 1    | 1     |        |        |    |     | AGC threshold 86dBµV  |
|       | 1  | 0    | 0     |        |        |    |     | AGC threshold 88dB, V |
|       | 1  | 0    | 1     |        |        |    |     | AGC threshold 20.15+V |
|       | 1  | 1    | 0     |        |        |    |     | AGC threshold \$2dBµV |
|       | 1  | 1    | 1     |        |        |    |     | Keving AGC OFF"       |
| 0     |    |      |       |        |        |    |     | has to be "0"         |
|       |    | modu | lator | Fine A | Adjust |    | 3   | obsolett              |
| Table |    |      |       |        |        |    |     | 0050                  |

# Addr 13 Demodulator Fine Adjust

#### Table 16.

| MSB  |     |    |    |     |    |    | LSB | Function       |
|------|-----|----|----|-----|----|----|-----|----------------|
| d7   | d6  | d5 | d4 | 0.7 | d2 | d1 | d0  | Function       |
|      |     | 0  | 0  | υ   | 0  | 0  | 0   | 0mV            |
|      |     | 0  | 0  | 0   | 0  | 0  | 1   | +6mV           |
|      |     | 0  | 0  | 0   | 0  | 1  | 0   | +12mV          |
|      |     | 0- | -  |     | -  | -  | -   | -              |
| C    |     | 0  | 1  | 1   | 1  | 1  | 1   | +186mV         |
|      |     | 1  | 0  | 0   | 0  | 0  | 0   | 0mV            |
|      |     | 1  | 0  | 0   | 0  | 0  | 1   | -6mV           |
|      |     | 1  | 0  | 0   | 0  | 1  | 0   | -12mV          |
|      | ·O, | -  | -  | -   | -  | -  | -   | -              |
| -10- | 2   | 1  | 1  | 1   | 1  | 1  | 1   | -186mV         |
| 1    | 1   |    |    |     |    |    |     | have to be "1" |

**A7/** 

#### Addr 14 Quality Detection Adjacent Channel

#### Table 17.

| MSB |                                     |    |    |    |    |    | LSB | Function                              |  |  |  |  |  |
|-----|-------------------------------------|----|----|----|----|----|-----|---------------------------------------|--|--|--|--|--|
| d7  | d6                                  | d5 | d4 | d3 | d2 | d1 | d0  | Function                              |  |  |  |  |  |
|     |                                     |    |    |    |    |    | 1   | ISS filter 30KHz "ON"for weather band |  |  |  |  |  |
|     |                                     |    |    |    |    | 0  |     | AC highpass frequency 100kHz          |  |  |  |  |  |
|     |                                     |    |    |    |    | 1  |     | AC bandpass frequency 100kHz          |  |  |  |  |  |
|     |                                     |    |    |    | 0  |    |     | AC gain 32dB                          |  |  |  |  |  |
|     |                                     |    |    |    | 1  |    |     | AC gain 38dB                          |  |  |  |  |  |
|     |                                     | 0  | 0  | 0  |    |    |     | AC wide band threshold 0.25V          |  |  |  |  |  |
|     |                                     | 0  | 0  | 1  |    |    |     | AC wide band threshold 0.35V          |  |  |  |  |  |
|     |                                     | 0  | 1  | 0  |    |    |     | AC wide band threshold 0.45V          |  |  |  |  |  |
|     |                                     | -  | -  | -  |    |    |     |                                       |  |  |  |  |  |
|     |                                     | 1  | 1  | 1  |    |    |     | AC wide band threshold 0.95V          |  |  |  |  |  |
| 0   | 0                                   |    |    |    |    |    |     | AC narrow band threshold 0.0%         |  |  |  |  |  |
| 0   | 1                                   |    |    |    |    |    |     | AC narrow band threshold 0. V         |  |  |  |  |  |
| 1   | 0                                   |    |    |    |    |    |     | AC narrow band thre: hv/a 0.2V        |  |  |  |  |  |
| 1   | 1                                   |    |    |    |    |    |     | AC narrow band threshold 0.3V         |  |  |  |  |  |
|     | Addr 15 Quality Detection Multipath |    |    |    |    |    |     |                                       |  |  |  |  |  |
| MSB |                                     |    |    |    |    |    | L3B | Function                              |  |  |  |  |  |

### Addr 15 Quality Detection Multipath

| MSB |    |    |    |              |    |            | L3B | <b>F</b> irmedian               |
|-----|----|----|----|--------------|----|------------|-----|---------------------------------|
| d7  | d6 | d5 | d4 | d3           | d2 | <b>a</b> 1 | du  | Function                        |
|     |    |    |    |              |    | $b^{-1}$   | 0   | Multipath control "ON"          |
|     |    |    |    | C            |    |            | 1   | Multipath control "OFF"         |
|     |    |    |    | $\mathbf{O}$ |    | 0          | 1   | MP bandpass frequency 19KHz     |
|     |    |    |    |              |    | 10         | 51  | MP bandpass frequency 31KHz     |
|     |    | 10 |    |              | 0  | 1          | •   | MP gain 12dB                    |
|     | 10 |    |    |              | 1  |            |     | MP gain 23dB                    |
|     |    |    | 0  | 0            | 5  |            |     | MP threshold 0.50V              |
|     |    |    | 0  | 1            |    |            |     | MP threshold 0.75V              |
| JQ. |    | 0  | 1  | 0            |    |            |     | MP threshold 1.00V              |
|     |    | XC | 1  | 1            |    |            |     | MP threshold 1.25V              |
|     | 0  | 0  |    |              |    |            |     | Application mode 1              |
| C   | 0  | 1  |    |              |    |            |     | Application mode 2              |
| 0   |    |    |    |              |    |            |     | Multipath eliminates ac         |
| 1   |    |    |    |              |    |            |     | Multipath eliminates ac and ac+ |

#### Addr 16 Quality Deviation Detection

#### Table 19.

| MSB |    |    |    |    |    |    | LSB | Function                                              |
|-----|----|----|----|----|----|----|-----|-------------------------------------------------------|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function                                              |
|     |    |    |    |    | 0  | 0  | 0   | charge current $34\mu A$ , discharge current $6\mu A$ |
|     |    |    |    |    | 0  | 0  | 1   | charge current 32μA, discharge current 8μA            |
|     |    |    |    |    | 0  | 1  | 0   | charge current 30μA, discharge current 10μA           |
|     |    |    |    |    | 0  | 1  | 1   | charge current 28μA, discharge current 12μA           |
|     |    |    |    |    | -  | -  | -   | -                                                     |
|     |    |    |    |    | 1  | 1  | 1   | charge current 20µA, discharge current 20µA           |
|     |    |    | 0  | 0  |    |    |     | DEV threshold for ISS narrow/wide 30kHz               |
|     |    |    | 0  | 1  |    |    |     | DEV threshold for ISS narrow/wide 45kHz               |
|     |    |    | 1  | 0  |    |    |     | DEV threshold for ISS narrow/wide 60kHz               |
|     |    |    | 1  | 1  |    |    |     | DEV threshold for ISS narrow/wide 75I Hz              |
|     | 0  | 0  |    |    |    |    |     | DEV threshold for ISS filter "OFF' retic 1            |
|     | 0  | 1  |    |    |    |    |     | DEV threshold for ISS filter "CrF" ratio 1.3          |
|     | 1  | 0  |    |    |    |    |     | DEV threshold for ISS filter "OFF" ratio 1.4          |
|     | 1  | 1  |    |    |    |    |     | DEV threshold for ISS niter "OFF" ratio 1.5           |
| 0   |    |    |    |    |    |    |     | has to be 0                                           |

#### Addr 17 Quality ISS Filter

#### Table 20.

| 0             |    |                |         |      |     |           |      | has to be 0                                                               |
|---------------|----|----------------|---------|------|-----|-----------|------|---------------------------------------------------------------------------|
| Addr<br>Table |    | iality I       | ISS Fil | lter |     |           |      | ObstetePi                                                                 |
| MSB           |    |                |         |      |     |           | J.SB | c0                                                                        |
| d7            | d6 | d5             | d4      | d3   | d2  | -<br>  -1 | d0   | Function                                                                  |
|               |    |                |         |      |     |           | 0    | ISS filter control "ON"                                                   |
|               |    |                |         | 0    | D - |           | 1    | ISS filter control "OFF"                                                  |
|               |    |                |         |      |     | 0         |      | Switch ISS filter "OFF"                                                   |
|               |    |                |         |      |     | 1         |      | Switch ISS filter "ON"                                                    |
|               |    | KO             |         |      | 0   | 0-        | [    | Switch ISS filter 120kHz                                                  |
|               |    | $\overline{D}$ |         |      | 1   |           |      | Switch ISS filter 80kHz                                                   |
| C             |    | 0              | 0       | 0    |     |           |      | discharge current1 $\mu$ A, charge current mid 74 $\mu$ A narrow124 $\mu$ |
| 0-            |    | 0              | 0       | 1    |     |           |      | discharge current3µA, charge current mid 72µA narrow122µ                  |
|               |    | 0              | 1       | 0    |     |           |      | discharge current5µA, charge current mid 70µA narrow120µ                  |
|               |    | 0              | 1       | 1    |     |           |      | discharge current7µA, charge current mid 68µA narrow118µ                  |
| C             | О, | -              | -       | -    |     |           |      | -                                                                         |
| 5             |    | 1              | 1       | 1    |     |           |      | discharge current15µA,charge current mid 60µAnarrow110µ                   |
| 0             | 0  |                |         |      |     |           |      | ISS filter fine adjust -20kHz                                             |
| 0             | 1  |                |         |      |     |           |      | ISS filter fine adjust -10kHz                                             |
| 1             | 0  |                |         |      |     |           |      | ISS filter fine adjust 0kHz                                               |
| 1             | 1  |                |         |      |     |           |      | ISS filter fine adjust +10kHz                                             |

**A7/** 

#### Addr 18 AM Control1

#### Table 21.

| MSB |    |    |    |                |     |    | LSB | Function                             |
|-----|----|----|----|----------------|-----|----|-----|--------------------------------------|
| d7  | d6 | d5 | d4 | d3             | d2  | d1 | d0  |                                      |
|     |    |    |    |                |     |    | 0   | Normal AGC time constant             |
|     |    |    |    |                |     |    | 1   | Short time constant for AM seek stop |
|     |    |    |    |                |     | 0  |     | Multipath information available FM   |
|     |    |    |    |                |     | 1  |     | AM stereo output available           |
|     |    |    |    | 0              | 0   |    |     | Prescaler ratio 10                   |
|     |    |    |    | 0              | 1   |    |     | Prescaler ratio 8                    |
|     |    |    |    | 1              | 0   |    |     | Prescaler ratio 6                    |
|     |    |    |    | 1              | 1   |    |     | Prescaler ratio 4                    |
| 0   | 0  | 0  | 0  |                |     |    |     | Narrow band AGC threshold 74.4dBµV   |
| 0   | 0  | 0  | 1  |                |     |    |     | Narrow band AGC threshold 78.8dBµV   |
| 0   | 0  | 1  | 0  |                |     |    |     | Narrow band AGC threshold 80.0dLu    |
| 0   | 0  | 1  | 1  |                |     |    |     | Narrow band AGC threshold SJ.7dBµV   |
| 0   | 1  | 0  | 0  |                |     |    |     | Narrow band AGC three hold 53.2dBµV  |
| 0   | 1  | 0  | 1  |                |     |    |     | Narrow band ACC #resnold 77.1dBµV    |
| 0   | 1  | 1  | 0  |                |     |    |     | Narrow band AGC threshold 78.5dBµV   |
| 0   | 1  | 1  | 1  |                |     |    |     | Narro , pand AGC threshold 79.4dBµV  |
| 1   | 0  | 0  | 0  |                |     |    |     | Narro v band AGC threshold 42.7dBμV  |
| 1   | 0  | 0  | 1  |                |     |    |     | Narrow band AGC threshold 65.8dBµV   |
| 1   | 0  | 1  | 0  |                |     | 10 |     | Narrow band AGC threshold 77.6dBµV   |
| 1   | 0  | 1  | 1  |                |     |    |     | Narrow band AGC threshold 78.5dBµV   |
| 1   | 1  | 0  | 0  |                |     | 7  | Ì   | Narrow band AGC threshold 32.6dBµV   |
| 1   | 1  | 0  | 1  |                | 50- |    |     | Narrow band AGC threshold 55.0dBµV   |
| 1   | 1  | 1  | 0  | $[\mathbf{O}]$ |     |    |     | Narrow band AGC threshold 73.3dBµV   |
| 1   | 1  | 1  | 1  |                |     | X  | 51  | Narrow band AGC threshold 77.6dBµV   |

| 1. | мсв |    | 0  |    |    |    |    | LSB | Function                        |
|----|-----|----|----|----|----|----|----|-----|---------------------------------|
| Γ  | d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function                        |
| Γ  |     |    | 0  |    | 0  | 0  | 0  | 0   | AGC Threshold 82.0dBµV 80.1dBµV |
| Γ  | 0   | 5  |    |    | 0  | 0  | 0  | 1   | AGC Threshold 85.4dBµV 83.4dBµV |
| K  | 0   |    |    |    | 0  | 0  | 1  | 0   | AGC Threshold 87.5dBµV 85.5dBµV |
|    |     |    |    |    | 0  | 0  | 1  | 1   | AGC Threshold 89.2dBµV 87.2dBµV |
|    |     |    |    |    | 0  | 1  | 0  | 0   | AGC Threshold 90.6dBµV 88.6dBµV |
|    |     |    |    |    | 0  | 1  | 0  | 1   | AGC Threshold 91.9dBµV 89.8dBµV |
|    |     |    |    |    | 0  | 1  | 1  | 0   | AGC Threshold 92.9dBµV 90.8dBµV |
|    |     |    |    |    | 0  | 1  | 1  | 1   | AGC Threshold 93.8dBµV 91.8dBµV |
|    |     |    |    |    | 1  | 0  | 0  | 0   | AGC Threshold 94.6dBµV 92.6dBµV |
| ſ  |     |    |    |    | 1  | 0  | 0  | 1   | AGC Threshold 95.4dBµV 93.3dBµV |
| l  |     |    |    |    | 1  | 0  | 1  | 0   | AGC Threshold 96.1dBµV 94.0dBµV |

**A7/** 

#### Table 22. (continued)

| MSB             |    |        |       |      |     |     | LSB | Function                        |
|-----------------|----|--------|-------|------|-----|-----|-----|---------------------------------|
| d7              | d6 | d5     | d4    | d3   | d2  | d1  | d0  | Function                        |
|                 |    |        |       | 1    | 0   | 1   | 1   | AGC Threshold 96.7dBµV 94.6dBµV |
|                 |    |        |       | 1    | 1   | 0   | 0   | AGC Threshold 97.3dBµV 95.2dBµV |
|                 |    |        |       | 1    | 1   | 0   | 1   | AGC Threshold 97.8dBµV 95.7dBµV |
|                 |    |        |       | 1    | 1   | 1   | 0   | AGC Threshold 98.4dBµV 96.3dBµV |
|                 |    |        |       | 1    | 1   | 1   | 1   | AGC Threshold 98.8dBµV 96.8dBµV |
| 0               | 0  | 0      | 0     |      |     |     |     | Seek stop threshold 20.3dBµV    |
| 0               | 0  | 0      | 1     |      |     |     |     | Seek stop threshold 20.8dBµV    |
| 0               | 0  | 1      | 0     |      |     |     |     | Seek stop threshold 21.3dBµV    |
| 0               | 0  | 1      | 1     |      |     |     |     | Seek stop threshold 22.0dBµV    |
| 0               | 1  | 0      | 0     |      |     |     |     | Seek stop threshold 22.8dBµV    |
| 0               | 1  | 0      | 1     |      |     |     |     | Seek stop threshold 23.7dBµV    |
| 0               | 1  | 1      | 0     |      |     |     |     | Seek stop threshold 24.7dBµV    |
| 0               | 1  | 1      | 1     |      |     |     |     | Seek stop threshold 25.9dBµV    |
| 1               | 0  | 0      | 0     |      |     |     |     | Seek stop threshold 27.0aBµV    |
| 1               | 0  | 0      | 1     |      |     |     |     | Seek stop thres or 28.3dBµV     |
| 1               | 0  | 1      | 0     |      |     |     |     | Seek stop thiss old 30.4dBµV    |
| 1               | 0  | 1      | 1     |      |     |     |     | Seek Stop threshold 32.5dBµV    |
| 1               | 1  | 0      | 0     |      |     |     |     | Seek stop threshold 35.2dBµV    |
| 1               | 1  | 0      | 1     |      |     |     |     | Seek stop threshold 37.6dBµV    |
| 1               | 1  | 1      | 0     |      |     | 10  |     | Seek stop threshold 40.2dBµV    |
| 1               | 1  | 1      | 1     |      |     |     |     | Seek stop threshold 43.0dBµV    |
| Addr :<br>Fable |    | ftmute | e Con | trol |     | ر   | 5)  | , OV                            |
| MSB             |    | .0     |       |      | . ( | 17- | LSB | Function                        |

| Ī | MSB |    |     |    |    | . ( | ŤŢ. | LSB | <b>F</b>                                       |
|---|-----|----|-----|----|----|-----|-----|-----|------------------------------------------------|
| Î | d7  | d6 | 35  | d4 | d3 | d2  | d1  | d0  | Function                                       |
| Ĩ |     | 67 |     |    | 0  | 0   | 0   | 0   | Mute depth 0 in application 18dB               |
|   | 3   |    |     | 0  | 0  | 0   | 0   | 1   | Mute depth 1 in application 20dB               |
|   |     |    | . 0 |    | 0  | 0   | 1   | 0   | Mute depth 2 in application 22dB               |
|   |     |    | XC  |    | 0  | 0   | 1   | 1   | Mute depth 3 in application 24dB               |
| Ī |     |    | 0   |    | -  | -   | -   | -   | - (logarithmically behaviour)                  |
|   | C   | Ď. |     |    | 1  | 1   | 1   | 1   | Mute depth 15 in application 36dB              |
|   | 0-  |    |     | 0  |    |     |     |     | Mute disable                                   |
|   |     |    |     | 1  |    |     |     |     | Mute enable                                    |
|   |     |    | 0   |    |    |     |     |     | Sharp slope                                    |
| Ī |     |    | 1   |    |    |     |     |     | Smooth slope                                   |
| Î | 0   | 0  |     |    |    |     |     |     | Function "OFF"                                 |
| Î | 0   | 1  |     |    |    |     |     |     | Mute depth threshold for ISS filter "ON" 2dB   |
| Î | 1   | 0  |     |    |    |     |     |     | Mute depth threshold for ISS filter "ON" 1dB   |
| Î | 1   | 1  |     |    |    |     |     |     | Mute depth threshold for ISS filter "ON" 0.2dB |



#### Addr 21 Softmute Control 2

#### Table 24.

| MSB            |    |       |        |    |    |    | LSB | Function                                 |
|----------------|----|-------|--------|----|----|----|-----|------------------------------------------|
| d7             | d6 | d5    | d4     | d3 | d2 | d1 | d0  | Function                                 |
|                |    |       |        | 0  | 0  | 0  | 0   | Startpoint mute 0 in application 3dBµV   |
|                |    |       |        | 0  | 0  | 0  | 1   | Startpoint mute 1 in application 4dBµV   |
|                |    |       |        | 0  | 0  | 1  | 0   | Startpoint mute 2 in application 5dBµV   |
|                |    |       |        | 0  | 1  | 0  | 0   | Startpoint mute 3 in application 6dBµV   |
|                |    |       |        | -  | -  | -  | -   | -                                        |
|                |    |       |        | 1  | 1  | 1  | 1   | Startpoint mute 15 in application 18dBµV |
| 0              | 0  | 0     | 0      |    |    |    |     | AC mute threshold 60mV                   |
| 0              | 0  | 0     | 1      |    |    |    |     | AC mute threshold 80mV                   |
| 0              | 0  | 1     | 1      |    |    |    |     | AC mute threshold 100mV                  |
| -              | -  | -     | 0      |    |    |    |     | ·                                        |
| 1              | 0  | 0     | 0      |    |    |    |     | AC mute threshold 220mV                  |
| 1              | 1  | 1     | 1      |    |    |    |     | AC mute "OFF"                            |
| Addr∶<br>Table |    | Neter | Slider |    |    |    |     | solete product                           |
| MSB            |    |       |        |    |    |    | LSB | Function                                 |
| d7             | d6 | d5    | d4     | d3 | d2 | d1 | 0b  |                                          |

#### Addr 22 S-Meter Slider

| MSB        |    |            |    |    |    |    | LSB | Function               |
|------------|----|------------|----|----|----|----|-----|------------------------|
| d7         | d6 | d5         | d4 | d3 | d2 | d1 | d0  | Function               |
|            |    | 0          | 0  | 0  | 0  | 0  | 0   | S meter offset 0mV     |
|            |    | 0          | 0  | 0  | 0  | 7  | 51  | S meter offset -58mV   |
|            |    | 0          | 0  | 0  | 0  | 1  | 0   | S meter offset -116mV  |
|            |    | -          | -  | -  |    | -  | -   | -0+                    |
|            |    | 0          | 1  |    | 1  | 1  | 1   | S meter offset -1798mV |
|            |    | 1          | 0  | Ŭ  | 0  | 0  | 0   | S meter offset 0mV     |
|            |    | 1          | 3  | 0  | 0  | 0  | 1   | S meter offset +58mV   |
|            |    |            | 0  | 0  | 0  | J1 | 0   | S meter offset +116mV  |
|            |    | <b>7</b> - | -  | -  | )- | -  | -   | -                      |
| G          |    | 1          | 1  | 1  | 1  | 1  | 1   | S meter offset +1798mV |
|            | х  |            | X  |    |    |    |     | Not used               |
| 005<br>005 |    | ste        |    |    |    |    |     |                        |

#### Addr 23 Tank Adjust

#### Table 26.

| d7              | d6 |       |       |    |    |    | LSB | Eurotion       |
|-----------------|----|-------|-------|----|----|----|-----|----------------|
|                 |    | d5    | d4    | d3 | d2 | d1 | d0  | Function       |
|                 |    |       |       | 0  | 0  | 0  | 0   | 450kHz 0pF     |
|                 |    |       |       | 0  | 0  | 0  | 1   | 450kHz 1.6pF   |
|                 |    |       |       | 0  | 0  | 1  | 0   | 450kHz 3.2pF   |
|                 |    |       |       | 0  | 0  | 1  | 1   | 450kHz 4.8pF   |
|                 |    |       |       | -  | -  | -  | -   | -              |
|                 |    |       |       | 1  | 1  | 1  | 1   | 450kHz 24pF    |
| 0               | 0  | 0     | 0     |    |    |    |     | 10.7MHz 0pF    |
| 0               | 0  | 0     | 1     |    |    |    |     | 10.7MHz 0.55pF |
| 0               | 0  | 1     | 0     |    |    |    |     | 10.7MHz 1.1pF  |
| 0               | 0  | 1     | 1     |    |    |    |     | 10.7MHz 1.65pF |
| -               | -  | -     | -     |    |    |    |     | -              |
| 1               | 1  | 1     | 1     |    |    |    |     | 10.7MHz 8.25pF |
| Addr 2<br>Table |    | AL Ac | ljust |    |    |    |     | solete product |
| MSB             |    |       |       |    |    |    | LSB | Function       |

#### Addr 24 XTAL Adjust

#### Table 27.

| MSB |    |    |              |            |    |       | LSB | Function                       |
|-----|----|----|--------------|------------|----|-------|-----|--------------------------------|
| d7  | d6 | d5 | d4           | d3         | d2 | d1    | d0  | Function                       |
|     |    |    | 0            | 0          | 0  | 0     | 0   | CLoad 0pF                      |
|     |    |    | 0            | 0          | 0  | ) (   | 51  | C <sub>Load</sub> 0.625pF      |
|     |    |    | 0            | 0          | 0  | 77    | 0   | C <sub>Load</sub> 1.25pF       |
|     |    |    | 0            | 0          | 0  | 1     | 1   | C <sub>Load</sub> 1.875pF      |
|     |    |    | 0            | U          | 1  | 0     | 0   | C <sub>Load</sub> 2.5pF        |
|     |    |    | $\mathbf{O}$ | <b>-</b> - | -  | . + C | 5   | -                              |
|     |    |    |              | 1          | 1  | 1     | 1   | C <sub>Load</sub> 19.4pF       |
|     |    | 0  | 1            |            |    |       |     | Only for testing has to be "0" |
| х   | X  |    |              |            | )  |       |     | Not used                       |
|     |    |    |              |            |    |       |     |                                |

# ddr 25 Test Control،

Table 28.

| Ī | MSB | 01 |    |    |    |    |    | LSB | Function                               |  |
|---|-----|----|----|----|----|----|----|-----|----------------------------------------|--|
|   | d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function                               |  |
|   | Y   |    |    | 0  | 0  | 0  | 0  | 0   | Only for testing (bits have to be "0") |  |
|   |     |    | 0  |    |    |    |    |     | AMIF select                            |  |
| Ī |     |    | 1  |    |    |    |    |     | Permanent search stop select for AM    |  |
| Î |     | 0  |    |    |    |    |    |     | S meter slope 1V/decade                |  |
| Î |     | 1  |    |    |    |    |    |     | S meter slope 1.5V/decade              |  |
|   | 0   |    |    |    |    |    |    |     | Only for testing (has to be "0")       |  |

#### Addr 26 Test

#### Table 29.

| MSB |    |    |    |    |    |    | LSB | Function                               |  |  |  |
|-----|----|----|----|----|----|----|-----|----------------------------------------|--|--|--|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Function                               |  |  |  |
| х   | х  | х  | х  | х  | 1  | 1  | 0   | Only for testing (bits have to be set) |  |  |  |

#### Addr 27 Test Mode1

| d7<br>0<br>Addr 2<br>Table<br>MSB<br>d7 |
|-----------------------------------------|
| Addr 2<br>Fable<br>MSB                  |
| Table<br>MSB                            |
|                                         |
| d7                                      |
|                                         |
| х                                       |
| 05                                      |

| MSB |    |    |    |    |    |    | LSB | Function                               |
|-----|----|----|----|----|----|----|-----|----------------------------------------|
| d7  | d6 | d5 | d4 | d3 | d2 | d1 | d0  | Gunction                               |
| х   | х  | 0  | 0  | 0  | 0  | 0  | 0   | Only for testing (bi s rave to be set) |

### APPENDIX

#### Figure 2.



57

#### **Block Diagram Quality Detection Principle**

#### Table 32.

| Signal | LOW                                        | HIGH                                      |
|--------|--------------------------------------------|-------------------------------------------|
| ac     | No adjacent channel                        | Adjacent channel present                  |
| ac+    | No strong adjacent channel                 | Adjacent channel higher as ac             |
| sm     | Fieldstrength higher as softmute threshold | Fieldstrength lower as softmute threshold |
| dev    | Deviation lower as threshold DWTH          | Deviation higher as threshold DWTH        |
| dev+   | Deviation lower as threshold DTH*DWTH      | Deviation higher as threshold DTH*DWTH    |
| inton  | ISS filter off by logic (wide)             | ISS filter on by logic                    |
| int80  | ISS filter 120kHz (mid)                    | ISS filter 80kHz (narrow)                 |

#### Table 33.

|    | Ir  | nput Signa | ls  |      |       | Mode1 |          |       | Mode?   |          |
|----|-----|------------|-----|------|-------|-------|----------|-------|---------|----------|
| ac | ac+ | sm         | dev | dev+ | inton | int80 | Function | inton | in 181) | Function |
| 0  | 0   | 0          | 0   | 0    | 0     | 0     | wide     | 0     | 0       | wide     |
| 0  | 0   | 0          | 1   | 0    | 0     | 0     | wide     | 0     | 0       | wide     |
| 0  | 0   | 0          | 1   | 1    | 0     | 0     | wide     |       | 0       | wide     |
| 0  | 0   | 1          | 0   | 0    | 1     | 1     | narrow   | 1     | 1       | narrow   |
| 0  | 0   | 1          | 1   | 0    | 0     | 0     | Vide     | 1     | 0       | mid      |
| 0  | 0   | 1          | 1   | 1    | 0     | 0     | wide     | 0     | 0       | wide     |
| 1  | 0   | 0          | 0   | 0    | 1     | 1     | narrow   | 1     | 0       | mid      |
| 1  | 1   | 0          | 0   | 0    | 1     | 51    | narrow   | 1     | 1       | narrow   |
| 1  | 0   | 0          | 1   | 0    | 1     | 0     | mid      | 1     | 0       | mid      |
| 1  | 1   | 0          | 1   | 1    | 1     | 0     | mid      | 1     | 1       | narrow   |
| 1  | 0   | 1          | 0   | C    | 1     | 1     | narrow   | 1     | 1       | narrow   |
| 1  | 1   | 1          | 0   |      | 1     | 1     | narrow   | 1     | 1       | narrow   |
| 1  | 0   | 1          | 1   | 5    | 1     | 0     | mid      | 1     | 0       | mid      |
| 1  | 1   | 1          |     | 0    | 1     | 0     | mid      | 1     | 1       | narrow   |
| 1  | 0   | 1          | 1   | 1    |       | 0     | mid      | 1     | 0       | mid      |
| 1  | 1   | 1          | 1   | 1    | 1     | 0     | mid      | 1     | 1       | narrow   |

# Part List (Application- and Measurment Circuit)

0

Table 34.

| item     | Description                                              |
|----------|----------------------------------------------------------|
|          | TOKO 7KL 600ENS-9132NK                                   |
| 152      | TOKO 7KL 600ENS-9390AQ                                   |
| F3       | TOKO 7KL V600ENS-9469BS                                  |
| F4       | TOKO 7PSG 628AC-5022N                                    |
| F5       | TOKO PGL 5PGLC-5103N                                     |
| L1,L5    | SIEMENS SIMID03 B82432 1mH                               |
| L2,L4    | TOKO FSLU 2520-680 68µH                                  |
| L3       | TOKO FSLU 2520-150 15µH                                  |
| CF1,CF2  | MURATA SFE10.7MS3A10-A 180KHz or (TOKO CFSK107M3-AE-20X) |
| CF3      | MURATA SFE10.7MJA10-A 150KHz or (TOKO CFSK107M4-AE-20X)  |
| CF4      | MURATA SFPS 450H 6KHz or (TOKO ARLFC450T)                |
| T1,T2    | COMPONEX B4F 617PT-1026                                  |
| D1,D3,D5 | TOKO KV1410                                              |
| D2,D4    | TOSHIBA 1SV172                                           |
| Q1       | TOSHIBA 3SK126                                           |
| Q2       | TOSHIBA HN3G01J                                          |

#### 3 APPLICATION CIRCUI

#### Figure 4.



38/41

57

#### **MEASUREMENT CIRCUIT** 4

## Figure 5.



| DIM. |      | mm    |           | inch    |        |        |  |
|------|------|-------|-----------|---------|--------|--------|--|
| 0    | MIN. | TYP.  | MAX.      | MIN.    | TYP.   | MAX.   |  |
| А    |      |       | 1.60      |         |        | 0.063  |  |
| A1   | 0.05 |       | 0.15      | 0.002   |        | 0.006  |  |
| A2   | 1.35 | 1.40  | 1.45      | 0.053   | 0.055  | 0.057  |  |
| В    | 0.18 | 0.23  | 0.28      | 0.007   | 0.009  | 0.011  |  |
| С    | 0.12 | 0.16  | 0.20      | 0.0047  | 0.0063 | 0.0079 |  |
| D    |      | 12.00 |           |         | 0.472  |        |  |
| D1   |      | 10.00 |           |         | 0.394  |        |  |
| D3   |      | 7.50  |           |         | 0.295  |        |  |
| е    |      | 0.50  |           |         | 0.0197 |        |  |
| E    |      | 12.00 |           |         | 0.472  |        |  |
| E1   |      | 10.00 |           |         | 0.394  |        |  |
| E3   |      | 7.50  |           |         | 0.295  |        |  |
| L    | 0.40 | 0.60  | 0.75      | 0.0157  | 0.0236 | 0.0295 |  |
| L1   |      | 1.00  |           |         | 0.0393 |        |  |
| К    |      | (     | )°(min.), | 7°(max. | )      |        |  |

# OUTLINE AND MECHANICAL DATA TQFP64



40/41

amation funisher sep of such re-matice functions - Obsolete E Froductions obsolete E Froduction - Obsolete E Froductions obsolete E Froductions - Obsolete E Froductions - Obsolete E Froductions obsolete E Froductions - Obsolete E Froductions

by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics ® 2001 STMicroelectronics - All Rights Reserved

> > STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com