

TDA7512F

FM car-radio tuner IC with intelligent selectivity system (ISS)

Features

FM part

- RF AGC generation by RF and IF detection
- I/Q mixer for 1st FM IF 10.7 MHz with image rejection
- 2 programmable IF-gain stages
- Mixer for 2nd IF 450 kHz
- Internal 450 kHz bandpass filter with three bandwidths controlled by ISS
- Fully integrated FM-demodulator with noise cancellation

Additional features

- VCO for world tuning range
- High performance fast PLL for RDS-system
- IF counter with search stop signal
- Quality detector for level, deviation, adjacent channel and multipath
- Quality detection informations as analog signals external available
- ISS (intelligent selectivity system) for cancellation of adjacent channel and noise influences

- Adjacent channel mute
- Fully electronic alignment
- All functions I²C bus controlled

Description

The TDA7512F is a high performance tuner circuit for FM car-radio. It contains mixer, IF amplifier, demodulator, quality detection, ISS filter and PLL synthesizer with IF counter on a single chip. Use of BiCMOS technology allows the implementation of several tuning functions and a minimum of external components.

Table 1. Device summary

Order code	Package	Packing
E-TDA7512F	LQFP64	Tray
E-TDA7512FTR	LQFP64	Tape and reel

57

Contents

1	Bloc	diagram	
2	Pin d	escription	
3	Elect	ical specificatio	ns 10
	3.1	Thermal data	
	3.2	Absolute maximur	n ratings
	3.3	Electrical characte	ristics
4	Func	ional descriptio	1.IF
	4.1	Mixer 1, AGC and	1.IF 17
	4.2	Mixer 2, limiter and	d demodulator 17
	4.3	Quality detection a	Ind ISS
		4.3.1 Fieldstreng	yth
			hannel detector
		4.3.3 Multipath of	letector
		4.3.4 450 kHz IF	narrow bandpass filter (ISS filter)
		4.3.5 Deviation	letector
		4.3.6 ISS switch	logic
	4.4	Soft Mute control	
	4.5	PLL and IF counte	r section
	20	4.5.1 PLL freque	ency synthesizer block19
	0	4.5.2 Frequency	generation for phase comparison
NS		4.5.3 Three stat	e phase comparator
) (4.5.4 Charge pu	mp current generator
		4.5.5 Inlock dete	ctor
		4.5.6 Low noise	CMOS op-amp
			block
			imer
			te frequency main counter
		•	t of the measurement sequence time
			ne frequency value
	4.6		
		4.6.1 Data trans	ition

			4.6.2	Start condition	21
			4.6.3	Stop condition	21
			4.6.4	Acknowledge	21
			4.6.5	Data transfer	22
			4.6.6	Device addressing	22
			4.6.7	Write operation	22
			4.6.8	Read operation	22
	5	Softv	vare spe	ecification	24
		5.1	Addres	s organization	24
		5.2	Control	register function	25
		5.3	Data by	te specification	27
	6	Pack			38
	Appendix	A B	lock dia	ngrams	39
	Appendix			O_{ϕ}	
5.3 Data byte sp 6 Package informa Appendix A Block diagram Appendix B Application n 7 Revision history		44			
		je.	Prof	26	. 21 . 22 . 22 . 22 . 22 . 22 . 22 . 24 . 24
		4.6.4 Acknowledge 21 4.6.5 Data transfer 22 4.6.6 Device addressing 22 4.6.7 Write operation 22 4.6.8 Read operation 22 4.6.8 Read operation 22 5.1 Address organization 24 5.2 Control register function 25 5.3 Data byte specification 27 Package information 38 A Block diagrams 39			

List of tables

Table 2.	Pin description	. 7
Table 3.	Thermal data	
Table 4.	Absolute maximum ratings	10
Table 5.	Electrical characteristics	10
Table 6.	Address organization	24
Table 7.	Control register function	25
Table 8.	Subaddress	27
Table 9.	Addr 0 charge pump control	27
Table 10.	Addr 1 PLL counter 1 (LSB)	28
Table 11.	Addr 2 PLL counter 2 (MSB)	
Table 12.	Addr 3,4 TV1,2 (offset refered to tuning voltage PIN 28)	29
Table 13.	Addr 5 IF counter control 1	29
Table 14.	Addr 6 IF Counter Control 2	
Table 15.	Addr 7 not valid	30
Table 16.	Addr 7 not valid	30
Table 17.	Addr 9 quality detection adjacent channel	31
Table 18.	Addr 10 quality detection multipath	31
Table 19.	Addr 9 quality detection adjacent channel	32
Table 20.	Addr 12 soft mute control 1	32
Table 21.	AOOL 15 SOU HULE COULOLZ	
Table 22.	Addr 14 VCODIV/PLLREF	33
Table 23.	Addr 15 FM AGC	34
Table 24.	Addr 16 not valid.	35
Table 25.	Addr 17 FM demodulator fine adjust	
Table 26.	Addr 18 s-meter slider	
Table 27.	Addr 19 IF GAIN/XTAL adjust.	36
Table 28.	Addr 20 tank adjust	
Table 29.	Addr 21 I/Q mixer 1 adjust	
Table 30.	Addr 22 test control 1	
Table 31.	Addr 23 test control 2	
Table 32.	Addr 24 Test control 3	
Table 33.	Addr 25 test control 4	
Table 34.	Block diagram quality detection principle (without overdeviation correction)	41
Table 35.	Input signals modes	
Table 36.	Part list (application- and measurment circuit)	
Table 37.	Document revision history	44

List of figures

Figure 1 Figure 2	. Pin connection (top view)
Figure 3 Figure 4	•
Figure 5	. Block diagram I/Q mixer
Figure 6 Figure 7	•
Figure 8	Block diagram ISS function
Figure 9	. Application circuit
	Block diagram keying AGC
	oleter
	Obsu
	inct(S)
	Prool
c	lete
0,02	

1 Block diagram

2 Pin description

.

	Table 2.	Pin description	
	Pin #	Pin name	Function
	1	nu	not used - to be left open
	2	nu	not used - to be left open
	3	nu	not used - to be left open
olk	4	nu	not used - to be left open
- SO'	5	nu	not used - to be left open
$O_{\mathcal{P}}$	6	PINDR	PIN Diode Driver Output
	7	MIX1IN1	Input1 Mixer1
	8	GNDRF	RF Ground
	9	MIX1IN2	Input2 Mixer1
	10	AGCTC	AGC Time Constant
	11	TV1	Tuning Voltage Preselection1
	12	TV2	Tuning Voltage Preselection2
	13	ADJCH	Ident. Adjacent Channel Output
	14	FSU	Unweighted Fieldstrength Output
	15	ISSTC	Time Constant for ISS Filter Switch

Tab	le 2.	Pin description	(continued)		
Pi	in #	Pin name	Function		
1	16	VCCVCO	VCO Supply		
1	17	GNDVCO	VCO Ground		
1	18	VCOB	VCO Input Base		
1	19	VCOE	VCO Output Emitter		
2	20	DEVTC	Deviation Detector Time Constant		
2	21	XTALG	Xtal Oscillator to MOS Gate		
2	22	XTALD	Xtal Oscillator to MOS Drain		
2	23	GNDVCC3	VCC3 Ground		
2	24	SSTOP	Search Stop Output		
2	25	SDA	I ² C-Bus Data		
2	26	SCL	I ² C-Bus Clock		
2	27	VCC3	Supply Tuning Voltage		
2	28	LPOUT	Op Amp Output to PLL Loop Filters		
2	29	VREF2	Voltage Reference for PLL Op Amp		
3	30	nu	not used - to be left open		
3	31	LPF	Op Amp Input to PLL Loop Filter		
3	32	LPHC	High Current PLL Loop Filter Input		
3	33	GNDVCC1	Digital Ground		
3	34	MP	Ident. Multipath Output		
3	35	FSW	Weighted Fieldstrength Output		
З	36	VCC1	Digital Supply		
3	37	MPX	MPX Output		
3	38	nu	not used - to be left open		
	39	nu	not used - to be left open		
	40	nu	not used - to be left open		
4	41	IICADDR	Hardwired IIC-Address PIN		
4	42	MUTETC	Softmute Time Constant		
4	43	nu	not used - to be left open		
4	44	REFDEMC	Demodulator Reference		
4	45	MIX2IN2	MIX2 Input1		
4	46	MIX2IN1	MIX2 Input2		
4	47	GNDDEM	Ground Demodulator		
4	48	VREF1	Reference 5V		
4	49	GNDVCC2	Analog Ground		
5	50	IF1AMP2OUT	IF1 Amplifier2 Output		

 Table 2.
 Pin description (continued)

Function Analog Supply F1 Amplifier2 Input F1 Amplifier Reference F1 Amplifier1 Output tot used - has to be connected versus VCC2 tot used - has to be connected versus VCC2 F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply ot used - to be left open MIX Tank 10.7MHz
F1 Amplifier2 Input F1 Amplifier Reference F1 Amplifier1 Output tot used - has to be connected versus VCC2 tot used - has to be connected versus VCC2 F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply tot used - to be left open MIX Tank 10.7MHz
F1 Amplifier Reference F1 Amplifier1 Output tot used - has to be connected versus VCC2 tot used - has to be connected versus VCC2 F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply tot used - to be left open MIX Tank 10.7MHz
F1 Amplifier1 Output not used - has to be connected versus VCC2 not used - has to be connected versus VCC2 F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply not used - to be left open MIX Tank 10.7MHz
tot used - has to be connected versus VCC2 tot used - has to be connected versus VCC2 F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply tot used - to be left open MIX Tank 10.7MHz
tot used - has to be connected versus VCC2 F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply tot used - to be left open MIX Tank 10.7MHz
F1 Amplifier1 Input SS Filter Status F1 Ground F AGC Input F1 Supply tot used - to be left open MIX Tank 10.7MHz
SS Filter Status F1 Ground F AGC Input F1 Supply tot used - to be left open //IX Tank 10.7MHz
F1 Ground F AGC Input F1 Supply tot used - to be left open /IX Tank 10.7MHz
F AGC Input F1 Supply Not used - to be left open VIX Tank 10.7MHz
F1 Supply tot used - to be left open /IX Tank 10.7MHz
INT used - to be left open IX Tank 10.7MHz
/IX Tank 10.7MHz
/IX Tank 10.7MHz

 Table 2.
 Pin description (continued)

16

Electrical specifications 3

Thermal data 3.1

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{th(j-amb)}	Thermal resistance junction-to-ambient	68 max.	°C/W

Absolute maximum ratings 3.2

Table 4.	Absolute maximum ratings		
Symbol	Parameter	Value	Unit
Vs	Supply voltage	10.5	V
T _{amb}	Ambient temperature	-40 to 85	°C
T _{stg}	Storage temperature	-55 to +150	°C
Electri	cal characteristics		

Electrical characteristics 3.3

 $\begin{array}{l} T_{amb} = +25 \ ^{\circ}C, \ V_{CC1} = V_{CC2} = V_{CC3} = V_{CCVCO} = V_{CCMIX1} = V_{CCIF1} = 8.5 \ V, \ f_{RF} = 98 \ MHz, \\ dev. = 40 \ kHz, \ f_{MOD} = 1 \ kHz, \ f_{IF1} = 10.7 \ MHz, \ f_{IF2} = 450 \ kHz, \ f_{Xtal} = 10.25 \ MHz, \ in \ application \end{array}$ circuit, unless otherwise specified.

Table 5.	Electrical characteristic	s
----------	---------------------------	---

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Supply	210					
V _{CC1}	Digital supply voltage	-	7.5	8.5	10	V
V _{CC2}	Analog supply voltage	-	7.5	8.5	10	V
V _{CC3}	Analog tuning voltage	-	7.5	8.5	10	V
V _{CCVCO}	VCO supply voltage	-	7.5	8.5	10	V
V _{CCMIX1}	MIX1 supply voltage	-	7.5	8.5	10	V
V _{CCIF1}	IF1 supply voltage	-	7.5	8.5	10	V
I _{CC1}	Supply current	-	-	7.5	-	mA
I _{CC2}	Supply current	VCO:3	-	70	-	mA
I _{CC3}	Supply current	-	-	2	-	mA
Iccvco	Supply current	-	-	9	-	mA
I _{CCMIX1}	Supply current	-	-	8	-	mA
I _{CCIF1}	Supply current	-	-	6	-	mA

Table 5.	Electrical characteristic	s (continued)	-		-	
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Reference	voltages					
V _{REF1}	Internal reference voltage	I _{REF1} = 0 mA	-	5	-	V
V _{REF2}	Internal reference voltage	I _{REF2} = 0 mA	-	2.5	-	V
Wide band	RF AGC	· · · · · · · · · · · · · · · · · · ·				
V ₇₋₉	Lower threshold start	V ₁₀ = 2.5 V	-	85	-	dBµV
V ₇₋₉	Upper threshold start	V ₁₀ = 2.5 V	-	96	-	dBµV
Narrow bar	nd IF & keying AGC					~
V ₆₀	Lower threshold start	$KAGC = off, V_{7-9} = 0 mV_{RMS}$	-	86	*	dBµV
V ₆₀	Upper threshold start	$KAGC = off, V_{7-9} = 0 mV_{RMS}$	-	98	6	dBµV
V ₆₀	Lower threshold start with KAGC	$\begin{array}{l} KAGC=max,V_{7-9}=0\;mV_{RMS,}\\ {}_{\Delta}f_{IF}=300\;kHz \end{array}$	Ō	98	-	dBµV
V ₃₅	Start point KAGC	$\begin{array}{l} KAGC=max,V_{7\text{-}9}=0\;mV_{RMS,}\\ {}_{\Delta}f_{IF}=300\;kHz\\ f_{IF1}\;generate\;FSW\;level\;at\;V_{35} \end{array}$	5	3.6	-	v
D	Control range KAGC	ΔV ₃₅ = +0.4 V	-	16	-	dB
R _{IN}	Input resistance	- 00-	-	10	-	kΩ
C _{IN}	Input capacitance	-	-	2.5	-	pF
AGC time o	constant output	15)				
V ₁₀	Max. AGC output voltage	V ₇₋₉ = 0 mV _{RMS}	-		V _{REF1} +V _{BE}	V
V ₁₀	Min. AGC output voltage	V ₇₋₉ = 50 mV _{RMS}	-		0.5	V
I ₁₀	Min. AGC charge current	$V_{7-9} = 0 \text{ mV}_{RMS}$; $V_{10} = 2.5 \text{ V}$	-	-12.5	-	μA
I ₁₀	Max. AGC discharge current	$V_{7-9} = 50 \text{ mV}_{RMS}$; $V_{10} = 2.5 \text{ V}$	-	1.25	-	mA
AGC pin di	ode driver output					
	AGC OUT, current min.	$V_{7-9} = 0 \text{ mV}_{\text{RMS}}, V_6 = 2.5 \text{ V}$	-	50	-	μA
I ₆	AGC OUT, current max.	$V_{7-9} = 50 \text{ mV}_{RMS}, V_6 = 2.5 \text{ V}$	-	-20	-	mA
I/Q mixer 1	(10.7MHz)	· · · · · · · · · · · · · · · · · · ·				
R _{IN}	Input resistance	differential	-	10	-	kΩ
C _{IN}	Input capacitance	differential	-	4	-	pF
R _{OUT}	Output resistance	differential	100		-	kΩ
V _{7,9}	Input dc bias	-	-	3.2	-	V
9 _m	Conversion transconductance	-	-	17	-	mS
F	Noise figure	400 Ω generator resistance	-	3	-	dB

Table 5. Electrical characteristics (continued)

Table 5.	5. Electrical characteristics (continued)							
Symbol	Parameter	Parameter Test conditions M				Unit		
CP _{1dB}	1dB compression point	referred to diff. mixer input	-	100	-	dBµV		
IIP3	3 rd order intermodulation	-	-	122	-	dBµV		
IQG	I/Q gain adjust	G	-1	-	+1	%		
IQP	I/Q phase adjust	РН	-7	-	+8	DEG		
IRR	Image rejection ratio	ratio wanted/image	30	40	-	dB		
IRR	Image rejection ratio	with gain and phase adjust	40	46	-	dB		
IF1 Amplifie	er1,2 (10.7 MHz)			•				
G1 _{min}	Min. gain	IFG, referred to 330 Ω	-	9	-10	dB		
G1 _{max}	Max. gain	IFG, referred to 330 Ω	-	15	15	dB		
G2 _{min}	Min. gain	IFG, referred to 330 Ω	-	9	<u>y</u> .	dB		
G2 _{max}	Max. gain	IFG, referred to 330 Ω	-	01	-	dB		
R _{IN}	Input resistance	-	R	330	-	Ω		
R _{OUT}	Output resistance	-	8.	330	-	Ω		
CP _{1dB}	1dB compression point	referred to 330 Ω input	-	105	-	dBµV		
IIP3	3rd order Intermodulation	referred to 330 Ω input	-	126	-	dBµV		
Mixer 2 (45	0 kHz)	O ₂						
R _{IN}	Input impedance		-	330	-	W		
V ₄₆	Max. input voltage	.51	-	900	-	mV _{RMS}		
V ₄₈	Limiting sensitivity	S/N = 20dB	-	25	-	μV		
G	Mixer gain	-	-	18	-	dB		
Limiter 1 (4	50 kHz)							
G _{Limiter}	Gain	-	-	80	-	dB		
	or, audio output					I		
THD	Total harmonic distortion	Dev.= 75 kHz, V ₄₆ = 10 mV _{RMS}	-	-	0.1	%		
V _{MPX}	MPX output signal	Dev.= 75 kHz	-	500	-	mV _{RMS}		
R _{OUT}	Output resistance	-	-	50	-	Ω		
l∆VI _{min}	DC offset fine adjust	DEM, MENA = 1	-	8.5	-	mV		
l∆VI _{max}	DC offset fine adjust	DEM, MENA = 1	-	264	-	mV		
S/N	Signal to noise	Dev.= 40 kHz,V ₄₆ = 10 mV _{RMS}	-	76	-	dB		
Quality det	ection		I.	1		1		
S-meter, un	weighted fieldstrength							
V ₄₆	Min. input voltage MIX2	-	-	10	-	μV		
V ₁₄	Fieldstrength output	V ₄₆ = 0 V _{RMS}	-	0.1	-	V		

Table 5.	Electrical characteristic	Test conditions		_		
Symbol	Parameter	Min.	Тур.	Max.	Unit	
V ₁₄	Fieldstrength output	$V_{46} = 1 V_{RMS}$	-	4.9	-	V
ΔV_{14}	voltage per decade	SMSL = 0	-	1	-	V
ΔV_{14}	voltage per decade	SMSL = 1	-	1.5	-	V
ΔV_{14}	S-meter offset	SL, SMSL=1	-15		15	dB
R _{OUT}	Output resistance	-	-	200	-	W
ТК	Temp coeff.	-	-	0	-	ppm/K
S-meter, we	eighted fieldstrength					
V ₃₅	Fieldstrength output	V ₄₆ = 0 V _{RMS}	-	2.5	-	V
V ₃₅	Fieldstrength output	V ₄₆ = 1 V _{RMS}	-	4.9	C-V	v
R _{OUT}	Output resistance	-	-	12	<u> </u>	kΩ
Adjacent c	hannel gain			0	•	•
G _{min}	Gain minimum	ACG=0		32	-	dB
G _{max}	Gain maximum	ACG=1	0.	38	-	dB
Adjacent cl	hannel filter	~0 ¹⁰	1	1	1	1
f _{HP}	-3dB frequency highpass	ACF=0	-	100	-	kHz
f _{BP}	Centre frequency	ACF=1	-	100	-	kHz
f _{-20dB}	Attenuation 20dB	-	-	70	-	kHz
Adjacent c	hannel output	(3)	1			
V ₁₃	Output voltage low	-	-	0.1	-	V
V ₁₃	Output voltage high	-	-	4.9	-	V
R _{OUT}	Output resistance	-	-	4	-	kΩ
Multipath o	channel gain		1	1	1	1
G _{min}	Gain minimum	MPG=0	-	12	-	dB
G _{max}	Gain maximum	MPG=1	-	23	-	dB
	bandpass filter	I				
f _{Lower}	Centre frequency low	MPF=0	-	19	-	kHz
f _{Upper}	Centre frequency up	MPF=1	-	31	-	kHz
Q	Quality factor	-	5		10	-
Multipath o	utput	1	1	1	1	1
V ₃₄	Output voltage low	-	-	0.1	-	V
V ₃₄	Output voltage high	-	-	4.9	-	V
R _{OUT}	Output resistance	-	-	2.5	-	kΩ

 Table 5.
 Electrical characteristics (continued)

Table 5.	Electrical chara	cteristics	(continued)
----------	------------------	------------	-------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ISS (intellig	ent selectivity system)					
Filter 450 k	Hz					
f _{centre}	Centre frequency	f _{REF_intern} = 450 kHz	-	450	-	kHz
BW 3dB	Bandwidth, -3dB	ISS80 = 1	-	80	-	kHz
BW 20dB	Bandwidth, -20dB	ISS80 = 1	-	150	-	kHz
BW 3dB	Bandwidth, -3dB	ISS80 = 0	-	120	-	kHz
BW 20dB	Bandwidth, -20dB	ISS80 = 0	-	250	-	kHz
BW 3dB	Bandwidth weather band	ISS30 = 1	-	30	ī	kHz
BW 20dB	-20dB weather band	ISS30 = 1	-	80	G	kHz
Adjacent ch	nannel ISS filter threshold			~0/	0	
V _{NTH}	Internal low threshold	ACNTH	0	0	-	V
V _{NTH}	Internal high threshold	ACNTH	2.	0.3	-	V
V _{WTH}	Internal low threshold	ACWTH		0.25	-	V
V _{WTH}	Internal high threshold	ACWTH	-	0.95	-	V
Multipath t	hreshold	003				
V _{THMP}	Internal low threshold	МРТН	-	0.50	-	V
V _{THMP}	Internal high threshold	MPTH	-	1.25	-	V
ISS filter ti	me constant					
I ₁₅	Charge current low mid	TISS, ISSCTL = 1	-	-74	-	μA
I ₁₅	Charge current high mid	TISS, ISSCTL = 1	-	-60	-	μA
I ₁₅	Charge current low narrow	TISS, ISSCTL = 1	-	-124	-	μA
I ₁₅	Charge current high narrow	TISS, ISSCTL = 1	-	-110	-	μA
I ₁₅	Discharge current low	TISS, ISSCTL = 0	-	1	-	μA
l ₁₅	Discharge current high	TISS, ISSCTL = 0	-	15	-	μA
V ₁₅	Low voltage	ISSCTL = 0	-	0.1	-	V
V ₁₅	High voltage	ISSCTL = 1	-	4.9	-	V
ISS filter sv	vitch threshold					
V ₁₅	Threshold ISS on	ISSCTL = 0	-	3	-	V
V ₁₅	Threshold ISS off	ISSCTL = 0	-	1	-	V
V ₁₅	Threshold ISS narrow on	ISSCTL = 0	-	4	-	V
V ₁₅	Threshold ISS narrow off	ISSCTL = 0	-	2	-	V
I ₂₀	Charge current low	TDEV	-	-20	-	μA
I ₂₀	Charge current high	TDEV	-	-34	-	μA

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I ₂₀	Discharge current low	TDEV	-	6	-	μA
I ₂₀	Discharge current high	TDEV	-	20	-	μA
DEV _{WTH}	Internal low threshold	DWTH	-	30	-	kHz
DEV _{WTH}	Internal high threshold	DWTH	-	75	-	kHz
RATIO _{min}	Referred to threshold	DTH	-	1	-	-
RATIO _{max}	Referred to threshold	DTH	-	1.5	-	-
Softmute				1		
V _{ANT}	Upper startpoint	SMTH, SMD, SLOPE = 0	-	10	-10	dBµV
V _{ANT}	lower startpoint	SMTH, SMD, SLOPE = 0	-	3	C-V	dBµV
a _{SMmin}	Min. softmute depth	SMD, SLOPE = 0, SMTH _{Upper}	-	18	<u>.</u>	dB
a _{SMmax}	Max. softmute depth	SMD, SLOPE = 0, SMTH _{Upper}		36	-	dB
a _{SMTHISS}	Mute depth threshold for ISS filter on	SMCTH	0.2	-	2	dB
V_{ACTH}	Internal AC mute threshold	ACM	60	-	340	mV
a _{SMAC}	AC mute depth	ACMD	4	-	10	dB
I ₄₂	Charge current	- 00-	-	-47.5	-	μA
I ₄₂	Discharge current	-	-	2.5	-	μA
S/N over all		16				
S/N	Signal to noise	$V_{ANT_{min}} = 60 \text{ dB}\mu\text{V},$ dev.= 40 kHz,LP=15 kHz deemphasis t = 50 μ s	66	-	-	dB
Additional p	parameters		•		•	•
Output of T	uning Voltages (TV1,TV2)					
V _{OUT}	Output voltage	TVO	0.5	-	V _{CC3} - 0.5	V
R _{OUT}	Output impedance	-	-	20	-	kΩ
Xtal referen	ce oscillator			1		
f _{LO}	Reference frequency	C _{Load} = 15 pF	-	10.25	-	MHz
C _{Step}	Min. cap step	XTAL	-	0.75	-	pF
C _{max}	Max. cap	XTAL	-	23.25	-	pF
∆f/f	Deviation versus VCC2	$\Delta V_{CC2} = 1 V$	-	1.5	-	ppm/V
∆f/f	Deviation versus temp	-40°C < T < +85 °C	-	0.2	-	ppm/K
I ² C bus inte	rface					
f _{SCL}	Clock frequency	-	-	-	400	kHz
V _{IL}	Input low voltage					V

Table 5. Electrical characteristics (continued
--

Symbol	Parameter	Parameter Test conditions				Unit
V _{IH}	Input high voltage	-	3	-	-	V
I _{IN}	Input current	-	-5	-	5	μA
Vo	Output acknowledge voltage	I _O = 1.6 mA	-	-	0.4	v
Loop filter	input/output	·				
-I _{IN}	Input leakage current	V _{IN} = GND, PD _{OUT} = Tristate	-0.1	-	0.1	μA
I _{IN}	Input leakage current	V _{IN} = VREF1 PD _{OUT} = Tristate	-0.1	-	0.1	μA
V _{OL}	Output voltage Low	I _{OUT} = -0.2 mA	-	0.05	0.5	5 v
V _{OH}	Output voltage High	I _{OUT} = 0.2 mA	V _{CC3} - 0.5	V _{CC3} - 0.05)Cr.	v
I _{OUT}	Output current, sink	$V_{OUT} = 1 V \text{ to } V_{CC3} - 1 V$		00	10	mA
I _{OUT}	Output current, source	$V_{OUT} = 1 V \text{ to } V_{CC3} - 1 V$	-10	-	-	mA
Voltage cor	ntrolled oscillator (VCO)		6			
f _{VCOmin}	Minimum VCO frequency	-	160	-	-	MHz
f _{VCOmax}	Maximum VCO frequency	·	-	-	260	MHz
C/N	Carrier to Noise	f _{VCO} = 200 MHz, ∆f=1 kHz, B=1 Hz, closed loop	-	80	-	dBc
SSTOP out	put (open collector)	15				
V ₂₄	Output voltage low	I ₂₄ = -200 μA	-	0.2	0.5	V
V ₂₄	Output voltage high	-	-	-	5	V
-I ₂₄	Output leakage current	V ₂₄ = 5 V	-0.1	-	0.1	μA
I ₂₄	Output current, sink	V ₂₄ = 0.5 - 5 V	-	-	1	mA
ISSSTATUS	6 output (open drain)					
V ₅₈	Output voltage low, ISS- Filter "ON"	I ₂₄ = -200 μA	-	0.2	0.5	V
V ₅₈ Output voltage high, ISS- Filter "OFF"		-	-	-	5	V
-I ₅₈	Output leakage current	V ₂₄ = 5 V	-0.1	-	0.1	μA
I ₅₈	Output current, sink	V ₂₄ = 0.5 - 5 V	-	-	300	μA

Table 5. Electrical characteristics (continued)

Functional description 4

4.1 Mixer 1, AGC and 1.IF

FM quadrature I/Q-mixer converts RF to IF1 of 10.7MHz. The mixer provides inherent image rejection and wide dynamic range with low noise and large input signal performance. The mixer1 tank can be adjusted by software (IF1T). For accurate image rejection the gain- and phase-error generated as well in mixer as VCO stage can be compensated by software (G,PH)

It is capable of tuning the US FM, US weather, Europe FM, Japan FM and East Europe FM bands oductls

- US FM = 87.9 to 107.9 MHz •
- US weather = 162.4 to 162.55 MHz
- Europe FM = 87.5 to 108 MHz
- Japan FM = 76 to 91 MHz
- East Europe FM = 65.8 to 74 MHz

The AGC operates on different sensitivities and bandwidths in order to improve the input sensitivity and dynamic range. AGC thresholds are programmable by software (RFAGC, IFAGC, KAGC). The output signal is a controlled current for double pin diode attenuator. Two 10.7 MHz programmable amplifiers (IFG1, IFG2) correct the IF ceramic insertion loss and the costumer level plan application.

4.2 Mixer 2, limiter and demodulator

In this 2. mixer stage the first 10.7 MHz IF is converted into the second 450 kHz IF. A multistage limiter generates signals for the complete integrated demodulator without external tank. MPX output DC offset versus noise DC level is correctable by software (DEM).

Quality detection and ISS 4.3

Fieldstrength 4.3.1

Parallel to mixer 2 input a 10.7 MHz limiter generates a signal for digital IF counter and a fieldstrength output signal. This internal unweighted fieldstrength is used for keying AGC, adjacent channel and multipath detection and is available at PIN14 (FSU) after +6dB buffer stage. The behaviour of this output signal can be corrected for DC offset (SL) and slope (SMSL). The internal generated unweighted fieldstrength is filtered at PIN35 and used for softmute function and generation of ISS filter switching signal for weak input level (sm).

4.3.2 Adjacent channel detector

The input of the adjacent channel detector is AC coupled from internal unweighted fieldstrength. A programmable highpass or bandpass (ACF) and amplifier (ACG) as well as rectifier determines the influences. This voltage is compared with adjustable comparator1 thresholds (ACWTH, ACNTH). The output signal of this comparator generates a DC level at PIN15 by programmable time constant. Time control (TISS) for a present adjacent channel is made by charge and discharge current after comparator1 in an external capacitance. The

charge current is fixed and the discharge current is controlled by I^2C Bus. This level produces digital signals (ac, ac+) in an additional comparator4. The adjacent channel information is available as analog output signal after rectifier and +8 dB output buffer.

4.3.3 Multipath detector

The input of the multipath detector is AC coupled from internal unweighted fieldstrength. A programmable bandpass (MPF) and amplifier (MPG) as well as rectifier determines the influences. This voltage is compared with an adjustable comparator2 thresholds (MPTH). The output signal of this comparator 2 is used for the "Milano" effect. In this case the adjacent channel detection is switched off. The "Milano" effect is selectable by I²C bus (MPOFF). The multipath information is available as analog output signal after rectifier and +8 dB output buffer.

4.3.4 450 kHz IF narrow bandpass filter (ISS filter)

The device gets an additional second IF narrow bandpass filter for suppression of noise and adjacent channel signal influences. This narrow filter has three switchable bandwidthes, narrow range of 80 kHz, mid range of 120 kHz and 30 kHz for weather band information.

Without ISS filter the IF bandwidth (wide range) is defined only by ceramic filter chain. The filter is switched in after mixer 2 before 450 kHz limiter stage. The centre frequency is matching to the demodulator center frequency.

4.3.5 Deviation detector

In order to avoid distortion in audio output signal the narrow ISS filter is switched OFF for present overdeviation. Hence the demodulator output signal is detected.

A lowpass filtering and peak rectifier generates a signal that is defined by software controlled current (TDEV) in an external capacitance. This value is compared with a programmable comparator3 thresholds (DWTH, DTH) and generates two digital signals (dev, dev+). For weak signal condition deviation threshold is proportinal to FSU.

4.3.6 ISS switch logic

All digital signals coming from adjacent channel detector, deviation detector and softmute are acting via switching matrix on ISS filter switch. The IF bandpass switch mode is controlled by software (ISSON, ISS30, ISS80, CTLOFF).

The switch ON of the IF bandpass is also available by external manipulation of the voltage at PIN15.

Two application modes are available (APPM). The conditions are described in table 34.

4.4 Soft Mute control

The external fieldstrength signal at PIN 35 is the reference for mute control. The startpoint and mute depth are programmable (SMTH, SMD) in a wide range. The time constant is defined by external capacitance. Additional adjacent channel mute function is supported.

A highpass filter with -3 dB threshold frequency of 100 kHz, amplifier and peak rectifier generates an adjacent noise signal from MPX output with the same time constant for

softmute. This value is compared with comparator5 thresholds (ACM). For present strong adjacent channel the MPX signal is additional attenuated (ACMD).

4.5 PLL and IF counter section

4.5.1 PLL frequency synthesizer block

This part contains a frequency synthesizer and a loop filter for the radio tuning system. Only one VCO is required to build a complete PLL system for FM world tuning . For auto search stop operation an IF counter system is available.

The counter works in a two stages configuration. The first stage is a swallow counter with a two modulus (32/33) precounter. The second stage is an 11-bit programmable counter.

The circuit receives the scaling factors for the programmable counters and the values of the reference frequencies via an I²C bus interface. The reference frequency is generated by an adjustable internal (XTAL) oscillator followed by the reference divider. The main reference and step-frequencies are free selectable (RC, PC).

Output signals of the phase detector are switching the programmable current sources. The loop filter integrates their currents to a DC voltage.

The values of the current sources are programmable by 6 bits also received via the I^2C Bus (A, B, CURRH).

To minimize the noise induced by the digital part of the system, a special guard configuration is implemented. The loop gain can be set for different conditions by setting the current values of the chargepump generator.

4.5.2 Frequency generation for phase comparison

The RF signals applies a two modulus counter (32/33) pre-scaler, which is controlled by a 5bit A-divider. The 5-bit register (PC0 to PC4) controls this divider. In parallel the output of the prescaler connects to an 11-bit B-divider. The 11-bit PC register (PC5 to PC15) controls this divider

Dividing range:

f_{VCO} = [33 x A + (B + 1 - A) x 32] x f_{REF}

 $f_{VCO} = (32 \times B + A + 32) \times f_{REF}$

Important: For correct operation: $A \le 32$; $B \ge A$

4.5.3 Three state phase comparator

The phase comparator generates a phase error signal according to phase difference between f_{SYN} and f_{REF} . This phase error signal drives the charge pump current generator.

4.5.4 Charge pump current generator

This system generators signed pulses of current. The phase error signal decides the duration and polarity of those pulses. The current absolute values are programmable by A register for high current and B register for low current.

4.5.5 Inlock detector

Switching the chargepump in low current mode can be done either via software or automatically by the inlock detector, by setting bit LDENA to "1".

After reaching a phase difference about lower than 40nsec the chargepump is forced in low current mode. A new PLL divider alternation by I²C-Bus will switch the chargepump in the high current mode.

4.5.6 Low noise CMOS op-amp

An internal voltage divider at pin VREF2 connects the positive input of the low noise opamp. The charge pump output connects the negative input. This internal amplifier in cooperation with external components can provide an active filter.

While the high current mode is activated LPHC output is switched on.

4.5.7 IF counter block

The aim of IF counter is to measure the intermediate frequency of the tuner. The input signal is the 10.7MHz IF level after limiter.

The grade of integration is adjustable by eight different measuring cycle times. The tolerance of the accepted count value is adjustable, to reach an optimum compromise for search speed and precision of the evaluation.

4.5.8 Sampling timer

A sampling timer generates the gate signal for the main counter. The basically sampling time are in FM mode 6.25kHz (t_{TIM} =160 μ s).

This is followed by an asynchronous divider to generate several sampling times.

4.5.9 Intermediate frequency main counter

This counter is a 11 - 21-bit synchronous autoreload down counter. Five bits (CF) are programmable to have the possibility for an adjust to the centre frequency of the IF-filter. The counter length is automatic adjusted to the chosen sampling time.

At the start the counter will be loaded with a defined value which is an equivalent to the divider value ($t_{Sample} \ge f_{IF}$).

If a correct frequency is applied to the IF counter frequency input at the end of the sampling time the main counter is changing its state from 0h to 1FFFFFh.

This is detected by a control logic and an external search stop output is changing from LOW to HIGH. The frequency range inside which a successful count result is adjustable by the EW bits.

$$t_{CNT} = \frac{CF + 1696 + 1}{f_{IF}}$$

 $\begin{array}{l} Counter \ result \ succeeded: \\ t_{TIM} \geq t_{CNT} \ \ - \ t_{ERR} \\ t_{TIM} \leq t_{CNT} \ \ + \ t_{ERR} \\ \end{array} \\ Counter \ result \ failed: \\ t_{TIM} > t_{CNT} \ \ + \ t_{ERR} \end{array}$

 $t_{TIM} < t_{CNT} - t_{ERR}$

t_{TIM} = IF timer cycle time (sampling time)

 $t_{CNT} = IF$ counter cycle time

t_{EBB} = discrimination window (controlled by the EW registers)

The IF counter is only started by inlock information from the PLL part. It is enabled by software (IFENA).

4.5.10 Adjustment of the measurement sequence time

The precision of the measurements is adjustable by controlling the discrimination window. This is adjustable by programming the control registers EW.

The measurement time per cycle is adjustable by setting the registers IFS.

4.5.11 Adjust of the frequency value

The center frequency of the discrimination window is adjustable by the control registers CF.

4.6 I²C bus interface

The TDA7512F supports the I^2C bus protocol. This protocol defines any device that sends data onto the bus as a transmitter, and the receiving device as the receiver. The device that controls the transfer is a master and device being controlled is the slave. The master will always initiate data transfer and provide the clock to transmit or receive operations.

4.6.1 Data transition

Data transition on the SDA line must only occur when the clock SCL is LOW. SDA transitions while SCL is HIGH will be interpreted as START or STOP condition.

4.6.2 Start condition

A start condition is defined by a HIGH to LOW transition of the SDA line while SCL is at a stable HIGH level. This "START" condition must precede any command and initiate a data transfer onto the bus.

The device continuously monitors the SDA and SCL lines for a valid START and will not response to any command if this condition has not been met.

4.6.3 Stop condition

A STOP condition is defined by a LOW to HIGH transition of the SDA while the SCL line is at a stable HIGH level. This condition terminates the communication between the devices and forces the bus-interface of the device into the initial condition.

4.6.4 Acknowledge

Indicates a successful data transfer. The transmitter will release the bus after sending 8 bits of data. During the 9th clock cycle the receiver will pull the SDA line to LOW level to indicate it receive the eight bits of data.

4.6.5 Data transfer

During data transfer the device samples the SDA line on the leading edge of the SCL clock. Therefore, for proper device operation the SDA line must be stable during the SCL LOW to HIGH transition.

4.6.6 Device addressing

To start the communication between two devices, the bus master must initiate a start instruction sequence, followed by an eight bit word corresponding to the address of the device it is addressing.

The most significant 6 bits of the slave address are the device type identifier.

The TDA7512F device type is fixed as "110001".

The next significant bit is used to address a particular device of the previous defined type connected to the bus.

The state of the hardwired PIN 41 defines the state of this address bit. So up to two devices could be connected on the same bus. When PIN 41 is connected to VCC2 the address bit "1" is selected. When PIN 41 is left open the address bit "0" is selected. Therefor a double FM tuner concept is possible.

The last bit of the start instruction defines the type of operation to be performed:

- When set to "1", a read operation is selected
- When set to "0", a write operation is selected

The TDA7512F connected to the bus will compare their own hardwired address with the slave address being transmitted, after detecting a START condition. After this comparison, the TDA7512F will generate an "acknowledge" on the SDA line and will do either a read or a write operation according to the state of R/W bit.

4.6.7 Write operation

Following a START condition the master sends a slave address word with the R/W bit set to "0". The device will generate an "acknowledge" after this first transmission and will wait for a second word (the word address field). This 8-bit address field provides an access to any of the 32 internal addresses.

Upon receipt of the word address the TDA7512F slave device will respond with an "acknowledge". At this time, all the following words transmitted to the TDA7512F will be considered as Data.

The internal address will be automatically incremented. After each word receipt the TDA7512F will answer with an "acknowledge".

4.6.8 Read operation

If the master sends a slave address word with the R/W bit set to "1", the TDA7512F will transit one 8-bit data word. This data word includes the following informations:

bit0 (ISS filter, 1 = ON, 0 = OFF)

bit1 (ISS filter bandwidth, 1 = 80kHz, 0 = 120kHz)

bit2 (MPOUT,1 = multipath present, 0 = no multipath)

bit3 (1 = PLL is locked in , 0 = PLL is locked out).

- bit4 (fieldstrength indicator, 1 = lower as softmute threshold, 0 = higher as softmute threshold)
- bit5 (adjacent channel indicator, 1 = adjacent channel present, 0 = no adjacent channel)
- bit6 (deviation indicator, 1 = strong overdeviation present, 0 = no strong overdeviation)
- bit7 (deviation indicator, 1 = overdeviation present, 0 = no overdeviation)

obsolete Product(s)- Obsolete Product(s)

Software specification 5

The interface protocol comprises:

- start condition (S) _
- chip address byte _
- subaddress byte _
- sequence of data (N bytes + Acknowledge) _
- stop condition (P)

Figure 3. Interface protocol

S = Start

P = Stop

ACK = Acknowledge

D = Device Address

X = R/W bit

I = Pagemode

A = Subaddress

5.1 Address organization

Table 6. Address organization

	Function	Addr	7	6	5	4	3	2	1	0
	CHARGEPU MP	0	LDENA	CURRH	B1	B0	A3	A2	A1	A0
	PLL	1	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
	COUNTER	2	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8
	TV1	3	TV107	TV1O6	TV105	TV1O4	TV1O3	TV102	TV101	TV1O0
	TV2	4	TV2O7	TV2O6	TV2O5	TV2O4	TV2O3	TV2O2	TV2O1	TV2O0
	IFC CTRL 1	5	LM	CASF	-	-	IFENA	IFS2	IFS1	IFS0
	IFC CTRL 2	6	EW2	EW1	EW0	CF4	CF3	CF2	CF1	CF0
ĺ	not valid	7	-	-	-	-	-	-	-	-
ĺ	QUALITYISS	8	TISS2	TISS1	TISS0	TVWB	ISS30	ISS80	ISSON	CTLOFF
	QUALITY AC	9	ACNTH1	ACNTH0	ACWTH2	ACWTH1	ACWTH0	ACG	ACF	-
	QUALITY MP	10	MPAC	APPM2	APPM1	MPTH1	MPTH0	MPG	MPF	MPOFF

Function	Addr	7	6	5	4	3	2	1	0
QUALITYDEV	11	BWCTL	DTH1	DTH0	DWTH1	DWTH0	TDEV2	TDEV1	TDEV0
MUTE1	12	MENA	SMD3	SMD2	SMD1	SMD0	SMTH2	SMTH1	SMTH0
MUTE2	13	F100K	ACM3	ACM2	ACM1	ACM0	ACMD1	ACMD0	SMCTH
VCO/PLLREF	14	-	-	RC2	RC1	RC0	VCOD2	VCOD1	VCOD0
FMAGC	15	-	KAGC2	KAGC1	KAGC0	IFAGC1	IFAGC0	RFAGC1	RFAGC0
not valid	16	-	-	-	-	-	-	-	-
DEM ADJ	17	DNB1	DNB0	DEM5	DEM4	DEM3	DEM2	DEM1	DEM0
LEVEL	18	ODSW	-	SMSL	SL4	SL3	SL2	SL1	SL0
IF1/XTAL	19	XTAL4	XTAL3	XTAL2	XTAL1	XTAL0	IFG11	IFG10	IFG2
TANK ADJ	20	IF1T3	IF1T2	IF1T1	IF1T0	-	-		-
I/Q ADJ	21	ODCUR	-	G1	G0	PH3	PH2	PH1	PH0
TESTCTRL1	22	-	ISSIN	TOUT	TIN	CLKSEP	TEST3	TEST2	TEST1
TESTCTRL2	23	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
TESTCTRL3	24	-	TINACM	TINMP	TINAC	OUT11	OUT10	OUT9	OUT8
TESTCTRL4	25	-	-	-	OUT16	OUT15	OUT14	OUT13	OUT12
005									

 Table 6.
 Address organization (continued)

5.2 Control register function

Table 7. Control register function

	Register Name	Function
	A	Charge pump high current
	ACF	Adjacent channel filter select
	ACG	Adjacent channel filter gain
16	ACM	Threshold for startpoint adjacent channel mute
- SO'	ACMD	Adjacent channel mute depth
$\partial \rho_{2}$	ACNTH	Adjacent channel narrow band threshold
U	ACWTH	Adjacent channel wide band threshold
	APPM	Application mode quality detection
	В	Charge pump low current
	BWCTL	ISS filter fixed bandwith (ISS80) in automatic control
	CASF	Check alternative station frequency
	CF	Center frequency IF counter
	CLKSEP	Clock separation (only for testing)
	CTLOFF	Switch off automatic control of ISS filter
	CURRH	Set current high charge pump

	Register Name	Function (continued)				
	DEM	Demodulator offset				
	DNB	Demodulator noise spike blanking				
	DTH	Deviation detector threshold for ISS filter "OFF"				
	DWTH	Deviation detector threshold for ISS filter narrow/wide				
	EW	Frequency error window IF counter				
·	F100K	Corner frequency of AC-mute high pass filter				
	G	I/Q mixer gain adjust				
	IF1T	Miixer1 tank adjust				
	IFAGC	IF AGC				
·	IFENA	IF counter enable				
·	IFG	IF1 amplifier gain (10.7MHz)				
·	IFS	IF counter sampling time				
	ISSIN	Test input for ISS filter				
·	ISSON	ISS filter "ON"				
	ISS30	ISS filter 30KHz weather band				
	ISS80	ISS filter narrow/mid switch				
	KAGC	Keying AGC				
	LDENA	Lock detector enable				
	LM	Local mode seek stop				
	MENA	Softmute enable				
	MPAC	Adjacent channel control by multipath				
	MPF	Multipath filter frequency				
	MPG	Multipath filter gain				
76	MPOFF	Multipath control "OFF"				
SO.	MPTH	Multipath threshold				
70-	ODCUR	Current for overdeviation-correction				
	ODSW	Overdeviation-correction enable				
	OUT	Test output (only for testing)				
	PC	Counter for PLL (VCO frequency)				
	PH	I/Q mixer phase adjust				
	RC	Reference counter PLL				
	RFAGC	RF AGC				
	SL	S meter slider				
	SMCTH	Softmute capacitor threshold for ISS "ON"				
	SMD	Softmute depth threshold				

 Table 7.
 Control register function (continued)

Register Name	Function
SMSL	S meter slope
SMTH	Softmute startpoint threshold
TDEV	Time constant for deviation detector
TEST	Testing PLL/IFC (only for testing)
TIN	Switch FSU PIN to TEST input (only for testing)
TINAC	Test input adjacent channel (only for testing)
TINACM	Test input adjacent channel mute (only for testing)
TINMP	Test input multipath(only for testing)
TISS	Time constant for ISS filter "ON"/"OFF"
TOUT	Switch FSU PIN to Test output (only for testing)
TVO	Tuning voltage offset for prestage
TVWB	Tuning voltage offset for prestage (weather band mode)
VCOD	VCO divider
XTAL	Xtal frequency adjust

 Table 7.
 Control register function (continued)

Table 8. Subaddress

MSB							LSB	Function
-	-	Ι	A 4	A 3	A2	A1	A0	i unction
-	-	-	0	0	0	0	0	Charge pump control
-	-	-	0	0	0	0	1	PLL lock detector
-	-	-	-	20	-	-	-	-
-	-	- 1	T	0	1	0	1	I/Q ADJ
-	-	0	-	-	-	-	-	Page mode "OFF"
-	76	1	-	-	-	-	-	Page mode enable

5.3

Data byte specification

Table 9.	Addr	0 charge	pump	control
----------	------	----------	------	---------

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	T unction
-	-	-	-	0	0	0	0	High current = 0 mA
-	-	-	-	0	0	0	1	High current = 0.5 mA
-	-	-	-	0	0	1	0	High current = 1 mA
-	-	-	-	0	0	1	1	High current = 1.5 mA
-	-	-	-	-	-	-	-	-

	-			30 000			(*****	
MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	1	1	1	1	High current = 7.5 mA
-	-	0	0	-	-	-	-	Low current = 0 µA
-	-	0	1	-	-	-	-	Low current = 50 µA
-	-	1	0	-	-	-	-	Low current = 100 µA
-	-	1	1	-	-	-	-	Low current = 150 µA
-	0	-	-	-	-	-	-	Select low current
-	1	-	-	-	-	-	-	Select high current
0	-	-	-	-	-	-	-	Lock detector disable
1	-	-	-	-	-	-	-	Lock detector enable
Table 10	0.	Addr	1 PLL	count	er 1 (L	.SB)		0100

Table 9. Addr 0 charge pump control (continued)

Table 10. Addr 1 PLL counter 1 (LSB)

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	eter Function
0	0	0	0	0	0	0	0	LSB = 0
0	0	0	0	0	0	0	1	LSB = 1
0	0	0	0	0	0	1	0	LSB = 2
-	-	-	-	-	-	S	-	-
1	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	0	1	LSB = 253
1	1	1	1		1	1	0	LSB = 254
1	1	1	1	1	1	1	1	LSB = 255

Table 11. Addr 2 PLL counter 2 (MSB)

	MSB	2/2						Function	
	d7	d6	d5	d4	d3	d2	d1	d0	Function
	0	0	0	0	0	0	0	0	MSB = 0
Γ	0	0	0	0	0	0	0	1	MSB = 256
Γ	0	0	0	0	0	0	1	0	MSB = 512
Γ	-	-	-	-	-	-	-	-	-
	1	1	1	1	1	1	0	0	MSB = 64768
	1	1	1	1	1	1	0	1	MSB = 65024
Γ	1	1	1	1	1	1	1	0	MSB = 65280
	1	1	1	1	1	1	1	1	MSB = 65536

Swallow mode: $f_{VCO}/f_{SYN} = LSB + MSB + 32$ Note:

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	- Function
-	0	0	0	0	0	0	0	Tuning Voltage Offset = 0
-	0	0	0	0	0	0	1	TVO = 25mV
-	0	0	0	0	0	1	0	TVO = 50mV
-	-	-	-	-	-	-	-	-
-	1	1	1	1	1	1	1	TVO = 3175mV
0	-	-	-	-	-	-	-	-TVO
1	-	-	-	-	-	-	-	+TVO
Table	13.	Addr 5	IF cou	unter o	control	1		H CLL

Table 12.	Addr 3,4 TV1,2 (offset refered to tuning voltage PIN 28)
-----------	--

Table 13. Addr 5 IF counter control 1

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Punction
-	-	-	-	-	0	0	0	t _{Sample} = 20.48 ms (FM)128 ms (AM)
-	-	-	-	-	0	0	1	t _{Sample} = 10.24 ms (FM)64 ms (AM)
-	-	-	-	-	0	1	0	t _{Sample} = 5.12 ms (FM)32 ms (AM)
-	-	-	-	-	0	1	1	t _{Sample} = 2.56 ms (FM)16 ms (AM)
-	-	-	-	-	1	0	0	t _{Sample} = 1.28 ms (FM)8 ms (AM)
-	-	-	-	-	1	C 0	1	t _{Sample} = 640 μs (FM)4 ms (AM)
-	-	-	-	-	T	1	0	$t_{Sample} = 320 \ \mu s \ (FM)2 \ ms \ (AM)$
-	-	-	-	$\langle \rangle$	1	1	1	t _{Sample} = 160 μs (FM)1 ms (AM)
-	-	-	2	0	-	-	-	IF counter disable / stand by
-	-	- (-	1	-	-	-	IF counter enable
-	-0	0	1	-	-	-	-	has to be set
-	0	-	-	-	-	-	-	Disable mute & AGC on hold
S	1	-	-	-	-	-	-	Enable mute & AGC on hold
0	-	-	-	-	-	-	-	Disable local mode
1	-	-	-	-	-	-	-	Enable local mode (PIN diode current = 0.5 mA) "ON"

Table 14. Addr 6 IF	Counter Control 2
---------------------	-------------------

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	i unction
-	-	-	0	0	0	0	0	f _{Center} = 10.60625 MHz
-	-	-	0	0	0	0	1	f _{Center} = 10.61250 MHz
-	-	-	-	-	-	-	-	-
-	-	-	0	1	0	1	1	f _{Center} = 10.67500 MHz

MSB							LSB	_
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	0	1	1	0	0	f _{Center} = 10.68125 MHz
-	-	-	0	1	1	0	1	f _{Center} = 10.68750 MHz
-	-	-	0	1	1	1	0	f _{Center} = 10.69375 MHz
-	-	-	0	1	1	1	1	f _{Center} = 10.70000 MHz
-	-	-	-	-	-	-	-	-
-	-	-	1	1	1	1	1	f _{Center} = 10.80000 MHz
0	0	0	-	-	-	-	-	Not valid
0	0	1	-	-	-	-	-	Not valid
0	1	0	-	-	-	-	-	Not valid
0	1	1	-	-	-	-	-	∆f = 6.25kHz
1	0	0	-	-	-	-	-	Δf = 12.5kHz
1	0	1	-	-	-	-	-	∆f = 25kHz
1	1	0	-	-	-	-	-	$\Delta f = 50 \text{kHz}$
1	1	1	-	-	-	-	-	∆f = 100kHz

Table 14. Addr 6 IF Counter Control 2 (continued)

Table 15. Addr 7 not valid

MSB						G	LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
0	0	0	0	0	0	0	0	has to be set

Table 16. Addr 8 quality ISS filter

MSB		.0	X	-			LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
C	0.	-	-	-	-	-	0	ISS filter control "ON"
0-	-	-	-	-	-	-	1	ISS filter control "OFF"
-	-	-	-	-	-	0	-	Switch ISS filter "OFF"
-	-	-	-	-	-	1	-	Switch ISS filter "ON"
-	-	-	-	-	0	-	-	Switch "OFF" ISS filter 120kHz
-	-	-	-	-	1	-	-	Switch "ON" ISS filter 80kHz
-	-	-	-	0	-	-	-	Switch "OFF" ISS filter 30KHz for weatherband
-	-	-	-	1	-	-	-	Switch "ON" ISS filter 30KHz for weatherband
-	-	-	0	-	-	-	-	Disable TV offset for weather band
-	-	-	1	-	-	-	-	Enable TV offset for weather band (+4V)
0	0	0	-	-	-	-	-	discharge current1 μ A, charge current mid 74 μ A narrow124 μ A

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	i unction
0	0	1	-	-	-	-	-	discharge current $3\mu A$, charge current mid $72\mu A$ narrow $122\mu A$
0	1	0	-	-	-	-	-	discharge current 5 μ A, charge current mid 70 μ A narrow 120 μ A
0	1	1	-	-	-	-	-	discharge current 7 μ A, charge current mid 68 μ A narrow 118 μ A
-	-	-	-	-	-	-	-	-
1	1	1	-	-	-	-	-	discharge current 15µA,charge current mid 60µA narrow 110µA

Table 16. Addr 8 quality ISS filter (continued)

Table 17.	Addr 9 quality	y detection ad	jacent channel
		,]

Tuble			<u> </u>					lame
MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	-	0/1	Not valid
-	-	-	-	-	-	0	-	AC highpass frequency 100 kHz
-	-	-	-	-	-	1	-	AC bandpass frequency 100 kHz
-	-	-	-	-	0	-	-	AC gain 32 dB
-	-	-	-	-	1	-	-	AC gain 38 dB
-	-	0	0	0	-	-	-	AC wide band threshold 0.25 V
-	-	0	0	1	-	-	-	AC wide band threshold 0.35 V
-	-	0	1	0	-	S	-	AC wide band threshold 0.45 V
-	-	-	-	-		K	-	-
-	-	1	1	1	5	-	-	AC wide band threshold 0.95 V
0	0	-	~	00	-	-	-	AC narrow band threshold 0.0 V
0	1	-	21	-	-	-	-	AC narrow band threshold 0.1 V
1	0	x0	-	-	-	-	-	AC narrow band threshold 0.2 V
1) -	-	-	-	-	-	AC narrow band threshold 0.3 V

~	Table	18.	Addr	10 qua	ality d	etectio	on mu	ltipath	
	C								
									ſ

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	-	0	Multipath control "ON"
-	-	-	-	-	-	-	1	Multipath control "OFF"
-	-	-	-	-	-	0	-	MP bandpass frequency 19 kHz
-	-	-	-	-	-	1	-	MP bandpass frequency 31 kHz
-	-	-	-	-	0	-	-	MP gain 12 dB
-	-	-	-	-	1	-	-	MP gain 23 dB
-	-	-	0	0	-	-	-	MP threshold 0.50 V

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	0	1	-	-	-	MP threshold 0.75 V
-	-	-	1	0	-	-	-	MP threshold 1.00 V
-	-	-	1	1	-	-	-	MP threshold 1.25 V
-	0	0	-	-	-	-	-	Application mode 1
-	0	1	-	-	-	-	-	Application mode 2
0	-	-	-	-	-	-	-	Multipath eliminates ac
1	-	-	-	-	-	-	-	Multipath eliminates ac and ac+
Table	19.	Addr	11 qua	ality d	eviatio	on det	ection	
							100	

Addr 10 quality detection multipath (continued) Table 18.

Table 19. Addr 1	1 quality	deviation detection
------------------	-----------	---------------------

MSB							LSB	
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	0	0	0	charge current 34 μ A, discharge current 6 μ A
-	-	-	-	-	0	0	1	charge current 32 µA, discharge current 8 µA
-	-	-	-	-	0	1	0	charge current 30 μA, discharge current 10 μA
-	-	-	-	-	0	1	1	charge current 28 µA, discharge current 12 µA
-	-	-	-	-	-	-	-	
-	-	-	-	-	1	t	1	charge current 20 μA, discharge current 20 μA
-	-	-	0	0	Ċ	K	-	DEV threshold for ISS narrow/wide 30 kHz
-	-	-	0	1	5.	-	-	DEV threshold for ISS narrow/wide 45 kHz
-	-	-	1	0	-	-	-	DEV threshold for ISS narrow/wide 60 kHz
-	-	-	1	1	-	-	-	DEV threshold for ISS narrow/wide 75 kHz
-	0	0	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1.5
-	0	1	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1.4
S	21	0	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1.3
P .	1	1	-	-	-	-	-	DEV threshold for ISS filter "OFF" ratio 1
0	-	-	-	-	-	-	-	Disable ISS filter to fixed bandwith (ISS80) in automatic control
1	-	-	-	-	-	-	-	Enable ISS filter to fixed bandwith (ISS80) in automatic control

Table 20. Addr 12 soft mute control 1

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	0	0	0	Startpoint mute 0 in application about 3dBµV antenna level
-	-	-	-	-	0	0	1	Startpoint mute 1 in application about 4dBµV antenna level

Table	20.	Auui	12 30	it mu			(0011	inueu)
MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	-	-	-
-	-	-	-	-	1	1	1	Startpoint mute 7in application about $10dB_{\mu}V$ antenna level
-	0	0	0	0	-	-	-	Mute depth 0 in application 18d B
-	0	0	0	1	-	-	-	Mute depth 1 in application 20 dB
-	0	0	1	0	-	-	-	Mute depth 2 in application 22 dB
-	0	0	1	1	-	-	-	Mute depth 3 in application 24 dB
-	-	-	-	-	-	-	-	- (logarithmically behaviour)
-	1	1	1	1	-	-	-	Mute depth 15 in application 36 dB
0	-	-	-	-	-	-	-	Mute disable
1	-	-	-	-	-	-	-	Mute enable
Table	21.	Addr	13 so	oft mut	te con	trol 2	1	N.C. YI

Table 20.	Addr 12 soft mute control 1	(continued)
		(oonaba)

Table 21.	Addr 13 soft mute control 2

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	-	0	Disable mute threshold for ISS filter "ON"
-	-	-	-	-	-	-	1	Enable mute threshold for ISS filter "ON"
-	-	-	-	-	0	0	-	AC mute depth 10 dB
-	-	-	-	-	0	1	-	AC mute depth 8 dB
-	-	-	-	,		0	-	AC mute depth 6 dB
-	-	-		0.0	1	1	-	AC mute depth 4 dB
-	0	0	0	0	-	-	-	AC mute threshold 60 mV
-	0	0	0	1	-	-	-	AC mute threshold 80 mV
-	0	0	1	0	-	-	-	AC mute threshold 100 mV
S	<u> </u>	-	-	-	-	-	-	-
	0	1	1	1	-	-	-	AC mute threshold 340 mV
-	1	1	1	1	-	-	-	AC mute "OFF"
0	-	-	-	-	-	-	-	AC mute filter 110 kHz
1	-	-	-	-	-	-	-	AC mute filter 100 kHz

Table 22. Addr 14 VCODIV/PLLREF

MSB							Function	
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	0	0	not valid (only for testing)
-	-	-	-	-	-	0	1	VCO frequency divided by 2

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-		1	0	VCO frequency divided by 3
-	-	-	-	-		1	1	original VCO frequency
-	-	-	-	-	0	-	-	VCO" I" signal 0 °C
-	-	-	-	-	1	-	-	VCO "I" signal 180 °C
-	-	1	0	0	-	-	-	PLL reference frequency 50 kHz
-	-	1	0	1	-	-	-	PLL reference frequency 25 kHz
-	-	1	1	0	-	-	-	PLL reference frequency 10 kHz
-	-	1	1	1	-	-	-	PLL reference frequency 9 kHz
-	-	0	0	0	-	-	-	PLL reference frequency 2 kHz
0	0	-	-	-	-	-	-	has to be set

Table 22. Addr 14 VCODIV/PLLREF (continued)

Table 23. Addr 15 FM AGC

0	0	-	-	-	-	-	-	has to be set
Table	23.	Addr	15 FM	AGC				ier'
MSB								
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	0	0	RFAGC threshold V_{7-9TH} = 85 (77 ANT) dBµV
-	-	-	-	-	-	0	1	RFAGC threshold V_{7-9TH} = 90 (82 ANT) dBµV
-	-	-	-	-		5	0	RFAGC threshold V _{7-9TH} = 94 (86 ANT) dBµV
-	-	-	-		5	1	1	RFAGC threshold V _{7-9TH} = 96 (88 ANT) dBµV
-	-	-	-	0	0	-	-	IFAGC threshold V_{60TH} = 86 (60 ANT) dBµV
-	-		0	0	1	-	-	IFAGC threshold V_{60TH} = 92 (66 ANT) dBµV
-	-	0	-	1	0	-	-	IFAGC threshold V_{60TH} = 96 (70 ANT) dBµV
-	10		-	1	1	-	-	IFAGC threshold V_{60TH} = 98 (72 ANT) dBµV
G	0	0	0	-	-	-	-	KAGC threshold 80 dBµV
0	0	0	1	-	-	-	-	KAGC threshold 82 dBµV
-	0	1	0	-	-	-	-	KAGC threshold 84 dBµV
-	0	1	1	-	-	-	-	KAGC threshold 86 dBµV
-	1	0	0	-	-	-	-	KAGC threshold 88 dBµV
-	1	0	1	-	-	-	-	KAGC threshold 90 dBµV
-	1	1	0	-	-	-	-	KAGC threshold 92 dBµV
-	1	1	1	-	-	-	-	Keying AGC "OFF"
0	-	-	-	-	-	-	-	has to be "0"

34/45

Table 24. Addr 16 not valid

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
1	1	1	1	1	1	1	1	has to be set

Table 25.	Addr 17 FM demodulator fine adjust
-----------	------------------------------------

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	0	0	0	0	0	0	0 mV
-	-	0	0	0	0	0	1	+8.5 mV
-	-	0	0	0	0	1	0	+17 mV
-	-	-	-	-	-	-	-	- 202
-	-	0	1	1	1	1	1	+263.5 mV
-	-	1	0	0	0	0	0	0 mV
-	-	1	0	0	0	0	1	-8.5 mV
-	-	1	0	0	0	1	0	-17 mV
-	-	-	-	-	-	-	-	S
-	-	1	1	1	1	1	1	-263.5 mV
0	0	-	-	-	-	-	-	Spike cancelation "OFF"
0	1	-	-	-	-	5	-	Threshold for spike cancelation 270 mV
1	0	-	-	-			-	Threshold for spike cancelation 520 mV
1	1	-	-	6	2.	-	-	Threshold for spike cancelation 750 mV

Table 26. Addr 18 s-meter slider

MSB		× (?)	X i				LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
S	<u>.</u>	-	-	0	0	0	0	S meter slider offset SL=0dB
2	-	-	-	0	0	0	1	S meter offset SL=1dB
-	-	-	-	0	0	1	0	S meter offset SL=2dB
-	-	-	-	-	-	-	-	-
-	-	-	-	1	1	1	1	S meter offset SL=15dB
-	-	-	0	-	-	-	-	S meter offset -SL
-	-	-	1	-	-	-	-	S meter offset +SL
-	-	0	-	-	-	-	-	S Meter slope 1 V/decade
-	-	1	-	-	-	-	-	S meter slope 1.5 V/decade
-	1	-	-	-	-	-	-	has to be set

MSB LSB								Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
0	-	-	-	-	-	-	-	Overdeviation correction "ON"
1	-	-	-	-	-	-	-	Overdeviation correction "OFF"

Table 26. Addr 18 s-meter slider (continued)

Table 27. Addr 19 IF GAIN/XTAL adjust

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	-	-	-	0	IF1 gain2 9d B
-	-	-	-	-	-	-	1	IF1 gain2 11 dB
-	-	-	-	-	0	0	-	IF1 gain1 9 dB
-	-	-	-	-	0	1	-	IF1 gain1 11 dB
-	-	-	-	-	1	0	-	IF1 gain1 12 dB
-	-	-	-	-	1	1	-	IF1 gain1 15 dB
0	0	0	0	0	-	-	-	C _{Load} 0 pF
0	0	0	0	1	-	-	-	C _{Load} 0.75 pF
0	0	0	1	0	-	-	-	C _{Load} 1.5 pF
0	0	0	1	1	-	-	-	C _{Load} 2.25 pF
0	0	1	0	0	-	5	-	C _{Load} 3 pF
-	-	-	-	-	Ċ.	2	-	-
1	1	1	1	1	2-	-	-	C _{Load} 23.25 pF

Table 28. Addr 20 tank adjust

	MSB		.0.	Y				LSB	Function
	d7	d6	d6 d5 d		d3	d2	d1	d0	Function
	S	0.	-	-	0	0	0	0	has to be set
	0	0	0	0	-	-	-	-	10.7 MHz 0 pF
	0	0	0	1	-	-	-	-	10.7 MHz 0.55 pF
ĺ	0	0	1	0	-	-	-	-	10.7 MHz 1.1 pF
	0	0	1	1	-	-	-	-	10.7 MHz 1.65 pF
	-	-	-	-	-	-	-	-	-
	1	1	1	1	-	-	-	-	10.7 Hz 8.25 pF

MSB							LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
-	-	-	-	0	0	0	0	-7 °C
-	-	-	-	0	0	0	1	-6 °C
-	-	-	-	0	0	1	0	-5 °C
-	-	-	-	-	-	-	-	-
-	-	-	-	0	1	1	1	0°C
-	-	-	-	1	0	0	0	+1 °C
-	-	-	-	1	0	0	1	+2 °C
-	-	-	-	-	-	-	-	
-	-	-	-	1	1	1	1	+8 °C
-	-	0	0	-	-	-	-	0 %
-	-	0	1	-	-	-	-	-1 %
-	-	1	0	-	-	-	-	+1 %
-	-	1	1	-	-	-	-	0 %
-	х	-	-	-	-	-	-	not used
0	-	-	-	-	-	-	-	Overdeviation correction current max = $45 \mu A$
1	-	-	-	-	-	-	-	Overdeviation correction current max = 90 µA

Table 29.Addr 21 I/Q mixer 1 adjust

Table 30. Addr 22 test control 1

MSB LSB								Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
х	х	х	х	x	х	х	х	Only for testing (have to be set to 0)

Table 31. Addr 23 test control 2

MSB	SB LSB						LSB	Function
d7	d6	d5	d4	d3	d2	d1	d0	Function
X	x	х	х	х	х	х	х	Only for testing (have to be set to 0)

Table 32.Addr 24 Test control 3

MSB							LSB	Function		
d7	d6	d5	d4	d3	d2	d1	d0	Function		
х	х	х	х	х	х	х	х	Only for testing (have to be set to 0)		

Table 33.Addr 25 test control 4

MSB LSB								Function	
d7	d6	d5	d4	d3	d2	d1	d0	Function	
х	х	х	х	х	х	х	х	Only for testing (have to be set to 0)	

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

38/45

57

Appendix A Block diagrams

Figure 5. Block diagram I/Q mixer

Figure 6. Block diagram VCO

correc	lion)	
Signal	Low	High
ac	No adjacent channel	Adjacent channel present
ac+	No strong adjacent channel	Adjacent channel higher as ac
sm	Fieldstrength higher as softmute threshold	Fieldstrength lower as softmute threshold
dev	Deviation lower as threshold DWTH	Deviation higher as threshold DWTH
dev+	Deviation lower as threshold DTH*DWTH	Deviation higher as threshold DTH*DWTH
inton	ISS filter off by logic (wide)	ISS filter on by logic
int80	ISS filter 120kHz (mid)	ISS filter 80kHz (narrow)

Table 34.Block diagram quality detection principle (without overdeviation correction)

Table 35. Input signals modes

	In	put signa	ls			Mode 1		0)	Mode 2	2
0ac	0ac+	0sm	0dev	0dev+	0inton	0int80	0Function	0inton	0int80	0Function
0	0	0	0	0	0	0	wide	0	0	wide
0	0	0	1	0	0	0	wide	0	0	wide
0	0	0	1	1	0	0	wide	0	0	wide
0	0	1	0	0	1	1	narrow	1	1	narrow
0	0	1	1	0	0	0	wide	1	0	mid
0	0	1	1		0	0	wide	0	0	wide
1	0	0	0	0	1	1	narrow	1	0	mid
1	1	0	0	0	1	1	narrow	1	1	narrow
1	0	0	1	0	1	0	mid	1	0	mid
1	*6	0	1	1	1	0	mid	1	1	narrow
1	0	1	0	0	1	1	narrow	1	1	narrow
40	1	1	0	0	1	1	narrow	1	1	narrow
Qĭ	0	1	1	0	1	0	mid	1	0	mid
1	1	1	1	0	1	0	mid	1	1	narrow
1	0	1	1	1	1	0	mid	1	0	mid
1	1	1	1	1	1	0	mid	1	1	narrow

Table 36. Part lis	t (application- and measurment circuit)									
Item	Description									
F1	TOKO 5KM 396INS-A542EK									
F2	TOKO MC152 E558CN-100021									
F3	TOKO 7PSG 826RC-5134N									
L1	TOKO LQH31									
L2	TOKO LL 2012-680									
CF1	TOKO CFSK107M3-AE-20X									
CF2	TOKO CFSK107M4-AE-20X									
D1,D2	TOKO KP2311E									
D3	TOKO KV1370NT									
D4	PHILIPS BB156									

Table 36. Part list (application- and measurment cir	cuit)
--	-------

Figure 9. Application circuit

Appendix B **Application notes**

Following items are important to get highest performance of TDA7512F in application:

- In order to avoid leakage current from PLL loop filter input to ground a guardring is 1. recommended around loop filter PIN's with PLL reference voltage potential.
- Distance between Xtal and VCO input PIN 18 should be far as possible and Xtal 2. package should get a shield versus ground.
- 3. Blocking of VCO supply should be near at PIN 16 and PIN 17.
- Wire lenght to FM mixer1 input and output should be symetrically and short. 4.
- 5. FM demodulator capacitance at PIN 44 should be sense connected as short as possible versus demodulator ground at PIN 47.
- .oud be a .nd. Obsolete Product(s) Obsolete(s) Obsolete(s) Obsolete(s) Obsolete(s) Obsolete(s) Obs With respect to THD capacitive coupling from PIN 20 to VCO should be avoided.

7 Revision history

Table 37.Document revision history

	Date	Revision	Changes
	05-Sep-2006	1	Initial release.
	24-Jun-2009	2	Updated Section 6: Package information on page 38.
	17-Sep-2013	3	Updated Disclaimer
17-Sep-2013 3 Updated Disclaimer			

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

