♦ STRUCTURE Silicon Monolithic Integrated Circuit ♦ PRODUCT I²C BUS Serial EEPROMs ♦ SERIES SIGNATURE SERIES **♦ FAMILY** BR24C□□ family ♦ TYPE Supply voltage 2.5V~5.5V/Opreating temperature −40°C~+85°Ctype ## ♦ PART NUMBER ## BR24C□□-W□□6TP | PART NUMBER | PACKAGE | DENSITY | |----------------|----------------------|---------| | BR24C01-WMN6TP | | 1Kbit | | BR24C02-WMN6TP | | 2Kbit | | BR24C04-WMN6TP | | 4Kbit | | BR24C08-WMN6TP | SO8 narrow | 8Kbit | | BR24C16-WMN6TP | | 16Kbit | | BR24C32-WMN6TP | | 32Kbit | | BR24C64-WMN6TP | | 64Kbit | | BR24C01-WDW6TP | | 1Kbit | | BR24C02-WDW6TP | | 2Kbit | | BR24C04-WDW6TP | TSSOP8 | 4Kbit | | BR24C08-WDW6TP | 1330F6 | 8Kbit | | BR24C16-WDW6TP | | 16Kbit | | BR24C32-WDW6TP | | 32Kbit | | BR24C01-WDS6TP | | 1Kbit | | BR24C02-WDS6TP | TSSOP8 | 2Kbit | | BR24C04-WDS6TP | 3 × 3mm ² | 4Kbit | | BR24C08-WDS6TP | J 3∧3mm | 8Kbit | | BR24C16-WDS6TP | | 16Kbit | ## ♦ FEATURES Two wire serial interface Endurance: 1,000,000 erase/write cycles Data retention : 40years Intial Data FFh in all address ## **♦ ABSOLUTE MAXIMUM RATING** | Symbol | Parameter | Min | Max | Unit | |--------|---------------------|------|---------|------| | Tstg | Storage Temperature | -65 | 125 | °C | | Vio | Terminal Voltage | -0.3 | Vcc+0.3 | V | | Vcc | Supply Voltage | -0.3 | 6.5 | ٧ | ## ♦ POWER DISSIPATION (Ta=25°C) | PACKAGE | Rating | Unit | |-----------------------------|--------|------| | SO8 narrow | 450 *1 | mW | | TSSOP8 | 330 *2 | mW | | TSSOP8 3 × 3mm ² | 310 *3 | mW | ^{*} Degradation is done at 4.5mW/°C(*1), 3.3mW/°C(*2), 3.1mW/°C(*3) for operation above 25°C #### **♦ RECOMMENDED OPERATING CONDITION** | Symbol | Parameter | Min | Max | Unit | |----------------|-------------------------------|-----|-----|------| | Vcc | Supply Voltage | 2.5 | 5.5 | V | | T _A | Ambient Operating Temperature | -40 | 85 | °C | # ♦ DC OPERATING CHARACTERISTICS (Unless otherwise specified Ta=-40~85°C, Vcc=2.5~5.5V) | Parameter | Symbol | Min. | Max. | Unit | Test condition | |------------------------------------|------------------|--------|-----------|------|----------------------------------| | Input Leakage Current
(SCL,SDA) | l _u | - | ±2 | μА | VIN=Vss or Vcc | | Output Leakage Current | I _{LO} | - | ±2 | μА | VOUT= Vss or Vcc(SDA in Hi-Z) | | Supply Current | Lcc | | 1 | mA | Vcc=2.5V, f _C =400kHz | | Shared by Suredy Owners | I _{CC1} | - | 0.5 *1 | μА |)(IN =)/ | | Stand-by Supply Current | | | 2.0 *2 | | VIN =Vss or Vcc, Vcc=2.5V | | Input Low Voltage | V <u>⊾</u> | - | 0.3Vcc | ٧ | | | (E2,E1,E0,SCL,SDA) | | | | | | | Input Low Voltage (WC) | V _{BL} | _ | 0.5 *1 | v | | | input Low Voltage (WO) | | | 0.3Vcc *2 | | | | Input High Voltage | | | | | | | (E2,E1,E0,SCL,SDA,WC) | V _{BH} | 0.7Vcc | - | ٧ | | | Output Low Voltage | Vol | - | 0.4 | ٧ | IOL=2.1mA, Vcc=2.5V | *1 BR24C01/02/04/08/16 *2 BR24C32/64 ♦ AC OPERATING CHARACTERISTICS (Unless otherwise specified Ta=-40~85°C, Vcc=2.5~5.5V) | Parameter | Symbol | Min | Max | Unit | |--|---------------------|------|-----|------| | Clock Frequency | fc | - | 400 | kHz | | Clock Pulse Width High | tancı | 600 | - | ns | | Clock Pulse Width Low | t _{CLCH} | 1300 | - | ns | | SDA Fall Time *1 | t _{OLIDL2} | 20 | 300 | ns | | Data In Set Up Time | t _{DXCX} | 100 | - | ns | | Data In Hold Time | t _{CLDX} | 0 | - | ns | | Data Out Hold Time | t _{CLQX} | 200 | - | ns | | Clock Low to Next Data Valid(Access Time) | t _{CLOV} | 200 | 900 | ns | | Start Condition Set Up Time | t _{CHDX} | 600 | - | ns | | Start Condition Hold Time | t _{ol.cl.} | 600 | - | ns | | Stop Condition Set Up Time | t _{CHDH} | 600 | - | ns | | Time between Stop Condition and Next Start Condition | t _{DHDL} | 1300 | - | ns | | Write Time | t _w | - | 5 | ms | *1 Not 100% TESTED OThis product is not designed for protection against radioactive rays. ## ♦ BLOCK DIAGRAM ## ◇ PIN No., PIN NAME Fig.-1 BLOCK DIAGRAM #### **♦NOTES FOR POWER SUPPLY** Vcc rises through the low voltage region in which internal circuit of IC and the controller are unstable, so that device may not work properly due to an incomplete reset of internal circuit. To prevent this, the device has the feature of P.O.R. and LVCC. In the case of power up, keep the following conditions to ensure functions of P.O.R. and LVCC. - 1. It is necessary to be "SDA='H'" and "SCL='L' or 'H'". - 2. Follow the recommended conditions of tR, tOFF, Vbot for the function of P.O.R. during power up. Fig.-2 Vcc RISING WAVEFORM | ♦ RECOMMENDED CONDITIONS OF tR, tOFF, Vbot | | | | | | | | |--|-------------|------------|------------|--|--|--|--| | | tR | tOFF | Vbot | | | | | | | Below 10ms | Above 10ms | Below 0.3V | | | | | | | Below 100ms | Above 10ms | Below 0.2V | | | | | - Prevent SDA and SCL from being "High-Z". In case that condition 1. and/or 2. cannot be met, take following actions. - A) Unable to keep condition 1. (SDA is "LOW" during power up.) - → Control SDA ,SCL to be "HIGH" as Fig.-3(a), 3(b). - B) Unable to keep condition 2. - → After power becomes stable, execute software reset. - C) Unable to keep both conditions 1 and 2. - → Follow the instruction A first, then the instruction B. Fig.-3(a) SCL='H' and SDA='L' Fig.-3(b) SCL='L' and SDA='L' #### **♦**CAUTIONS ON USE (1) Absolute maximum ratings If the absolute maximum ratings such as impressed voltage and action temperature range and so forth are exceeded, LSI may be destructed. Do not impress voltage and temperature exceeding the absolute maximum ratings. In the case of fear exceeding the absolute maximum ratings, take physical safety countermeasures such as fuses, and see to it that conditions exceeding the absolute maximum ratings should not be impressed to LSI. (2) Vss electric potential Set the voltage of Vss terminal lowest at any action condition. Make sure that each terminal voltage is lower than that of Vss terminal. (3) Thermal design In consideration of permissible loss in actual use condition, carry out heat design with sufficient margin. (4) Terminal to terminal shortcircuit and wrong packaging When to package LSI onto a board, pay sufficient attention to LSI direction and displacement. Wrong packaging may destruct LSI. And in the case of shortcircuit between LSI terminals and terminals and power source, terminal and Vss owing to foreign matter, LSI may be destructed. (5) Use in a strong electromagnetic field may cause malfunction, therefore, evaluated design sufficiently. ## ROHM ## ♦ PHYSICAL DIMENSION Notes 1.This drawing is subject to change without notice. 2.Body dimensions do not include mold flash or protrusion, or gate burns. 3.Reference JEDEC MS-012 variation AA. Fig.-4 SO8 narrow Package Outline otes 1.This drawing is subject to change without notice. 2.Body dimensions do not include mold flash or protrusion, or gate burns. 3.Reference JEDEC MO-153 variation AA. Fig.-5 TSSOP Package Outline 1.This drawing is subject to change without notice. 2.Body dimensions do not include mold flash or protrusion, or gate burn 3.Reference JEDEC MO-187 variation AA. Fig.-6 TSSOP 3 × 3mm² Package Outline ♦ SO8 narrow Package size data | S. mak | | mm | | inches | | | |------------|------|------|------|--------|-------|-------| | Symb. | Тур. | Min. | Max. | Тур. | Min. | Max. | | Α | 1 | 1.35 | 1.75 | - | 0.053 | 0.069 | | A1 | 1 | 0.10 | 0.25 | - | 0.004 | 0.010 | | b | - | 0.33 | 0.51 | 1 | 0.013 | 0.020 | | С | 1 | 0.19 | 0.25 | - | 0.007 | 0.010 | | D | - | 4.80 | 5.00 | 1 | 0.189 | 0.197 | | е | 1.27 | - | 1 | 0.050 | | - | | E | - | 5.80 | 6.20 | 1 | 0.228 | 0.244 | | E1 | _ | 3.80 | 4.00 | 1 | 0.150 | 0.157 | | L | - | 0.40 | 1.27 | 0.050 | 0.016 | 0.050 | | θ 1 | _ | 0° | 8° | 1 | 0° | 8° | | ccc | - | - | 0.10 | - | | 0.004 | | h | _ | 0.25 | 0.50 | ı | 0.010 | 0.020 | | θ2 | 45° | _ | | 45° | _ | _ | ♦ TSSOP8 Package size data | Symb. | | mm | | inches | | | |---------|-------|-------|-------|--------|--------|--------| | Syllib. | Тур. | Min. | Max. | Тур. | Min. | Max. | | Α | - | - | 1.200 | - | - | 0.0472 | | A1 | - | 0.050 | 0.150 | - | 0.0020 | 0.0059 | | A2 | 1.000 | 0.800 | 1.050 | 0.0394 | 0.0315 | 0.0413 | | b | | 0.190 | 0.300 | - | 0.0075 | 0.0118 | | С | • | 0.090 | 0.200 | - | 0.0035 | 0.0079 | | D | 3.000 | 2.900 | 3.100 | 0.1181 | 0.1142 | 0.1220 | | е | 0.650 | - | - | 0.0256 | - | - | | E | 6.400 | 6.200 | 6.600 | 0.2520 | 0.2441 | 0.2598 | | E1 | 4.400 | 4.300 | 4.500 | 0.1732 | 0.1693 | 0.1772 | | L | 0.600 | 0.450 | 0.750 | 0.0236 | 0.0177 | 0.0295 | | L1 | 1.000 | • | - | 0.0394 | - | - | | ccc | - | - | 0.100 | - | - | 0.0039 | | θ | - | 0° | 8° | - | 0° | 8° | ♦ TSSOP8 3 × 3mm² Package size data | Symb. | | mm | | | inches | | |---------|-------|-------|-------|--------|--------|--------| | Syllib. | Тур. | Min. | Max. | Тур. | Min. | Max. | | Α | • | | 1.100 | - | - | 0.0433 | | A1 | ı | 0.050 | 0.150 | - | 0.0020 | 0.0059 | | A2 | 0.850 | 0.750 | 0.950 | 0.0335 | 0.0295 | 0.0374 | | b | - | 0.250 | 0.400 | _ | 0.0098 | 0.0157 | | С | - | 0.120 | 0.230 | - | 0.0047 | 0.0091 | | D | 3.000 | 2.900 | 3.100 | 0.1181 | 0.1142 | 0.1220 | | e | 0.650 | - | - | 0.0256 | - | - | | E | 4.900 | 4.650 | 5.150 | 0.1929 | 0.1831 | 0.2028 | | E1 | 3.000 | 2.900 | 3.100 | 0.1181 | 0.1142 | 0.1220 | | لـ | 0.550 | 0.400 | 0.700 | 0.0217 | 0.0157 | 0.0276 | | L1 | 0.950 | - | - | 0.0374 | | _ | | ccc | - | - | 0.100 | - | _ | 0.0039 | | θ | _ | 0° | 6° | _ | 0° | 6° | #### Notes - No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. - The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. - Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. - Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. - Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by - ROHM CO., LTD. is granted to any such buyer. - Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. #### About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. ### Please contact our sales offices for details; ``` U.S.A / San Diego TEL: +1(858)625-3630 FAX: +1(858)625-3670 Atlanta TEL: +1(770)754-5972 FAX: +1(770)754-0691 Dallas TEL: +1(972)312-8818 FAX: +1(972)312-0330 Germany / Dusseldorf TEL: +49(2154)9210 FAX: +49(2154)921400 United Kingdom / London TEL: +44(1)908-282-666 FAX: +44(1)908-282-528 France / Paris TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80 China / Hong Kong TEL: +852(2)740-6262 FAX: +852(2)375-8971 Shanghai TEL: +86(21)6279-2727 FAX: +86(21)6247-2066 Dilian TEL: +86(411)8230-8549 FAX: +86(411)8230-8537 Beijing TEL: +86(10)8525-2483 FAX: +86(10)8525-2489 Taiwan / Taipei TEL: +866(2)2500-6956 FAX: +866(2)2503-2869 Korea / Seoul TEL: +82(2)8182-700 FAX: +82(2)8182-715 Singapore TEL: +65-6332-2322 FAX: +65-6332-5662 Malaysia / Kuala Lumpur TEL: +60(3)7958-8355 FAX: +60(3)7958-8377 Philippines / Manila TEL: +63(2)807-6872 FAX: +63(2)809-1422 Thailand / Bangkok TEL: +66(2)254-4890 FAX: +66(2)256-6334 ``` # Japan / (Internal Sales) Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082 TEL: +81(3)5203-0321 FAX: +81(3)5203-0300 Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575 TEL: +81(45)476-2131 FAX: +81(45)476-2128 Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002 TEL: +81(52)581-8521 FAX: +81(52)561-2173 Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku, Kyoto 600-8216 TEL: +81(75)311-2121 FAX: +81(75)314-6559 (Contact address for overseas customers in Japan) Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271