
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3588

Keywords: microcontroller, MAXQ2000, I2C driver, C Compiler, IAR, MAXQ, microcontrollers, ADCs,
analog digital converters, micros

APPLICATION NOTE 3588

Software I²C Driver for the MAXQ2000
Microcontroller
Nov 04, 2005

Abstract: I²C (inter-integrated circuit) is a 2-wire interface that allows bidirectional communication
between integrated circuits. This application note describes a software I²C driver for the MAXQ2000
microcontroller that permits I²C communication at 100kHz or 400kHz using any of the microcontroller's
GPIO pins. Microcontrollers from the MAXQ family are well suited for such bit-banging applications
because of their high-speed, flexible GPIO modules, and separate I/O supply voltage.

Introduction
An I²C (inter-integrated circuit) is a 2-wire interface that allows bidirectional communication between
integrated circuits. This appnote describes the maxqi2c library, a software I²C driver for the MAXQ2000
microcontroller (µC).

The maxqi2c library is written in C using extensions that compile using the IAR Embedded Workbench
for MAXQ. It consists of two files: maxqi2c.h and maxqi2c.c. When these files are included in a
MAXQ2000 firmware project, they permit flexible I²C communication at 100kHz or 400kHz using any of
the µC's GPIO pins.

Microcontrollers from the MAXQ family are well-suited for such bit-banging applications because of their
high-speed, flexible GPIO modules and separate I/O supply voltage.

The files for the example project discussed in this appnote are available for download from Maxim
Integrated Products.

Configuring the maxqi2c Library
The user should copy the maxqi2c library files (maxqi2c.h and maxqi2c.c) to the MAXQ2000 project
directory and configure the files to create the desired I²C interface. All configurations are done by editing
the following code (Listing 1), which can be found at the top of the maxqi2c.h source file:

Listing 1. maxi2c.h customization code.

/* USER MUST CUSTOMIZE THE FOLLOWING DEFINE STMTS - START */
 // Enter the port used for SDA and SCL
 #define SDA_PORT 0
 #define SCL_PORT 0

Page 1 of 8

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/maxq2000
http://www.maximintegrated.com/maxq2000
http://www.maximintegrated.com/products/microcontrollers/maxq/development_tools/
ftp://ftp.dalsemi.com/pub/microcontroller/maxq/maxq2000/examples/

 // Enter the pin used for SDA and SCL
 #define SDA_PORT_BIT 0
 #define SCL_PORT_BIT 1

 // Uncomment one of these define statements to select I²C bus speed
 #define I2C_400_KHZ
 //#define I2C_100_KHZ

 // Comment out the following define statement to disable clock
 // stretching in i2cRecv()
 #define I2C_CLOCK_STRETCHING
/* USER MUST CUSTOMIZE THE FOLLOWING DEFINE STMTS - END */

Note: the customizations are implemented at compile time and, therefore, are fixed at runtime.

Choosing the SCL and SDA Pins
Two GPIO pins must be selected for use as SCL and SDA. After the I/Os for SCL and SDA are chosen,
the SDA_PORT and SCL_PORT define statements must be edited to reflect the desired ports for SDA
and SCL. The SDA_PORT_BIT and SCL_PORT_BIT define statements must also be edited to reflect
the desired pins (on the selected ports) for SDA and SCL.

The source code in Listing 1 above assigns pin 0 on I/O port 0 to act as SDA, and pin 1 on I/O port 0 to
act as SCL.

Choosing the Communication Speed
Selecting a communication speed is done by commenting out one of the two statements that define
I2C_400_KHZ and I2C_100_KHZ.

The source code in Listing 1 uses a 400kHz I²C bus to initialize the maxqi2c library into communication.
The communication is actually slightly less than 400kHz (or, alternatively, the 100kHz) because the I²C
interface is bit-banged. To achieve full 400kHz communication, firmware designers must study the
maxi2c library and remove some of the source code that provides the library's inherent flexibility.

Note: delays are included in the maxqi2c library to satisfy the I²C specification. These delays, found at
the top of the maxqi2c.c file, assume that the MAXQ2000 has a 20MHz system clock; the delays can
be shortened if a slower clock speed is used.

Using Clock Stretching
Clock stretching for the maxqi2c library is only permitted at the beginning of a transfer (after the address
acknowledgement if the address is being transmitted, or otherwise at the start of the transfer) during a
call to the i2cRecv() function. Clock stretching can, therefore, be used for I²C transfers with the following
format:

[S] [ADDR] [R] [A] [clock stretch] [DATA0] [A] ... [DATAN-1] [A]
or
[clock stretch] [DATA0] [A] ... [DATAN-1] [N] [P]
or
[clock stretch] [DATA0] [A] ... [DATAN-1] [A]

The description, i2cRecv(), in the section under Using the maxqi2c and the example code in the
section titled, Example Use of the maxqi2c Library, explain how to generate I²C commands with these
formats.

To enable clock stretching, the I2C_CLOCK_STRETCHING define statement should not be commented
out. If clock stretching is not required, disable it by commenting out the I2C_CLOCK_STRETCHING

Page 2 of 8

define statement. Disabling clock stretching will slightly increase the speed of the maxqi2c library's
i2cRecv() function.

The source code in Listing 1 above enables clock stretching.

Using the maxqi2c
Using the maxqi2c library to send and receive data from a software I²C driver is done with four functions:
i2cInit(), i2cIsAddrPresent(), i2cSend(), and i2cRecv(). The documentation for these functions can also
be found in the maxqi2c.h file.

None of these functions requires formal parameters. Instead, four global variables are used to store the
parameters for these functions: i2cData (unsigned char *), i2cDataLen (unsigned int), i2cDataAddr
(unsigned char), and i2cDataTerm (unsigned char). This technique allows the firmware to run faster by
not making copies of data during function calls. The four global variables used as parameters for the
maxqi2c library are: i2cData (unsigned char *), i2cDataLen (unsigned int), i2cDataAddr (unsigned
char), and i2cDataTerm (unsigned char).

i2cInit()
This function must be called before any of the other maxqi2c functions. It initializes the port pins selected
in the customization code of the maxqi2c.h file. This function requires no parameters (local or global)
and does not return a value.

i2cIsAddrPresent()
This function allows the MAXQ2000 to query the I²C bus to determine if a device with a particular
address is present. The function has one parameter, the global variable i2cDataAddr, which must be
loaded with the address of the device whose presence is being queried on the I²C bus. This function
also returns a value (of type unsigned char). That value is equal to I2C_XMIT_OK if a device with the
given address was found, or I2C_XMIT_FAILED if a device with the given address was not found.

To determine if a particular device is present on the I²C bus, i2cIsAddrPresent() transfers an I²C
command with the following format:

[S] [ADDR] [W] [A] [P]

i2cSend()
This function allows the MAXQ2000 to transfer data to a device using the software I²C driver. i2cSend()
requires the following four parameters (all global variables) to be initialized:

i2cData (unsigned char *): Pointer to the first byte of an array of bytes that will be transmitted.
i2cDataLen (unsigned int): Number of bytes (not including the device address) to transfer to the I²C
bus.
i2cDataAddr (unsigned char): The address of the device to which the data will be transferred. Note
that if this variable is set to zero, the I²C data will be transferred without sending the address.
i2cDataTerm (unsigned char): How the I²C transfer will be terminated. This variable can take two
values when calling i2cSend(): I2C_TERM_NONE or I2C_TERM_STOP.

The format used to transfer data to a device on the I²C bus depends on the value of the four global
variables used as parameters. Table 1 presents the I²C command formats resulting from different values
for these global variables.

Table 1. I²C Commands Sent by i2cSend()

Page 3 of 8

i2cDataLen(hex) i2cDataAddr(hex) i2cDataTerm I²C Command Format
0x0002 0x7E I2C_TERM_STOP [S] [ADDR] [W] [A] [DATA0] [A] [DATA1] [P]
0x0002 0x7E I2C_TERM_NONE [S] [ADDR] [W] [A] [DATA0] [A] [DATA1] [A]
0x0002 0x00 I2C_TERM_NONE [DATA0] [A] [DATA1] [A]
0x0002 0x00 I2C_TERM_STOP [DATA0] [A] [DATA1] [A] [P]

Note: the last three formats of Table 1 show how i2cSend() can transfer data continuously to the same
device on the I²C bus.

The i2cSend()function returns a value (of type unsigned char) equal to I2C_XMIT_OK if the addressed
device acknowledged every byte, or I2C_XMIT_FAILED if the addressed device did not acknowledge a
byte. The function will return immediately when a single byte is not acknowledged.

i2cRecv()
This function allows the MAXQ2000 to receive data from a device using the software I²C driver. The
i2cRecv() function requires the following four parameters (all global variables) to be initialized:

i2cData (unsigned char *): Pointer to the first byte of an array of bytes where the received values
will be stored.
i2cDataLen (unsigned int): Number of bytes (not including the device address) that will be received
from the I²C bus.
i2cDataAddr (unsigned char): The address of the device from which the data will be received. Note
that if this variable is set to zero, the I²C data will be received without sending the address.
i2cDataTerm (unsigned char): How the I²C transfer will be terminated. This variable can take three
values when calling i2cRecv(): I2C_TERM_NONE, I2C_TERM_ACK, or
I2C_TERM_NACK_AND_STOP.

The format used to receive data from a device on the I²C bus depends on the value of the four global
variables used as parameters. Table 2 presents the I²C command formats resulting from different values
for these global variables.

Table 2. I²C Commands Sent by i2cRecv() with Clock stretching Disabled
i2cDataLen(hex) i2cDataAddr(hex) i2cDataTerm I²C Command Format

0x0002 0x7E I2C_TERM_NACK_AND_STOP [S] [ADDR] [R] [A] [DATA0] [A]
[DATA1] [N] [P]

0x0002 0x7E I2C_TERM_ACK [S] [ADDR] [R] [A] [DATA0] [A]
[DATA1] [A]

0x0002 0x00 I2C_TERM_ACK [DATA0] [A] [DATA1] [A]
0x0002 0x00 I2C_TERM_NACK_AND_STOP [DATA0] [A] [DATA1] [N] [P]

Note: the last three formats of Table 2 show how i2cRecv() can receive data continuously from the
same device on the I²C bus.

The i2cRecv() function returns a value (of type unsigned char) equal to I2C_XMIT_FAILED if the
address was sent as part of the I²C command and was not acknowledged. Otherwise, I2C_XMIT_OK is
returned.

Example Use of the maxqi2c Library with Clock Stretching

Page 4 of 8

The following example shows how the maxqi2c library can be used to receive 16-bit samples from the
MAX1169 ADC and to transfer them to a PC using the MAXQ's RS-232 port.

Schematic
This example was implemented using the MAX1169 ADC evaluation kit and the MAXQ2000 evaluation
kit (Rev B). Figure 1 shows how both evaluation kits are connected. The pin-0 and pin-1 of I/O port 0 on
the MAXQ2000 (which are available on J2-30 and J2-28 respectively) serve as the master SDA and SCL
lines on the I²C bus.

Figure 1. Schematic shows the MAX1169 evaluation kit and the MAXQ2000 evaluation kit (Rev B)
connected and ready to be used by the maxqi2c library.

Note: the MAXQ2000 high-frequency crystal (Y1) on the MAXQ2000 evaluation kit has been replaced
with a 20MHz crystal. The jumper settings for the MAX1169 evaluation kit and the switch settings for the
MAXQ2000 evaluation kit must be set as indicated in Table 3 and Table 4:

Table 3. Jumper Settings for the MAX1169 Evaluation Kit
Jumper Shunt Position
JU1 Shunt on pins 1 and 2
JU2 Shunt on pins 1 and 2
JU3 Shunt on pins 1 and 2
JU4 No shunt
JU5 No shunt

Table 4. Switch Settings for the MAXQ2000 Evaluation Kit (Rev B)
Switch Position
SW1-1 OFF
SW1-2 OFF
SW1-3 OFF
SW1-4 ON
SW1-5 OFF

Page 5 of 8

http://www.maximintegrated.com/datasheet/index.mvp/id/4054
http://www.maximintegrated.com/datasheet/index.mvp/id/4478
http://www.maximintegrated.com/datasheet/index.mvp/id/4478

SW1-6 OFF
SW1-7 ON
SW1-8 OFF
SW6-1 OFF
SW6-2 OFF
SW6-3 OFF
SW6-4 OFF
SW6-5 OFF
SW6-6 OFF
SW6-7 OFF
SW6-8 ON

Firmware
The firmware file for this example (max1169.c) is given in Appendix A. The complete project can be
downloaded from the Maxim MAXQ2000 webpage and can be compiled using the IAR Embedded
Workbench for the MAXQ. In the example here, the code customization for the maxqi2c library (found at
the top of the maxqi2c.h file) is exactly the same as the source code shown in Listing 1.

The max1169.c file includes two header files, iomaxq200x.h and maxqi2c.h. Note that the
iomaxq200x.h file in the example will override the iomaxq200x.h file in the IAR Embedded Workbench
for MAXQ include path. The iomaxq200x.h file creates definitions for every pin on every port that are
required for the maxqi2c library. The maxqi2c.h file is included to allow the firmware to call functions in
the maxqi2c library.

The firmware is divided into five steps labeled with comments in the max1169.c file (see Appendix A).

Step 1 initializes UART0 to communicate asynchronously at 19200bps. Note that if the MAXQ2000
system clock is not 20MHz, the assignment to register PR0 will have to be changed to obtain the desired
baud rate.

Step 2 calls the i2cInit() function responsible for initializing the pins used on the MAXQ2000 for the I²C
bus.

Step 3 initializes the parameters and calls the i2cRecv() function. The parameters are initialized to
transfer an I²C command with the following format:

[S] [ADDR] [R] [A] [clock stretch] [DATA0] [A] [DATA1] [A (termination)]

Step 4 sets the address parameters to zero. This forces the i2cRecv() function to transfer an I²C
command with the following format:

[clock stretch] [DATA0] [A] [DATA1] [A (termination)]

Step 5 is a loop that repeats indefinitely. The loop calls i2cRecv() (with the format defined in step 4),
which receives a 16-bit sample from the MAX1169. This 16-bit sample is transferred (MSB first) to a PC
using UART0. Since the termination parameter, i2cDataTerm, is always equal to I2C_TERM_ACK, the
loop repeats indefinitely and the MAX1169 never sees a stop condition.

APPENDIX A: max1169.c

Page 6 of 8

ftp://ftp.dalsemi.com/pub/microcontroller/maxq/maxq2000/examples/

/*
 * DEMO of maxqi2c Software I²C Driver
 * (uses evkits for the MAX1169 and MAXQ2000)
 *
 * DESC: Test program for the maxqi2c.c/maxqi2c.h I²C
 * driver for the MAXQ2000. The program reads
 * 16-bit samples from the MAX1169 (running in
 * continuous conversion mode) and transmits them
 * using the UART0 port.
 *
 * NOTE - THE FOLLOWING CODE ASSUMES THE MAXQ2000 HAS
 * A Fsysclk=20MHz.
 */

#include "iomaxq200x.h"
#include "maxqi2c.h"

void main()
{
 unsigned char data[2];

 // 1. Init UART0
 PD7_bit.bit0 = 1; // Set TX0 pin as output
 SCON0 = 0x42;
 SMD0 = 0x02;
 PR0 = 0x07DD; // 19200bps

 // 2. Init bit-banged I²C port
 i2cInit();

 // 3. Send initial I²C request
 // [S] [ADDR+R] [A] [clock_stretch] [DATA0] [A] [DATA1] [A (termination)]
 i2cData = (unsigned char *)(&data); // cast needed!
 i2cDataAddr = 0x7E;
 i2cDataLen = 0x0002;
 i2cDataTerm = I2C_TERM_ACK;
 i2cRecv();

 // 4. Init continuous conversion
 // [clock_stretch] [DATA0] [A] [DATA1] [A (termination)]
 i2cDataAddr = 0x00;

 // 5. Receive a 16-bit sample and transfer it to the UART0 port
 // one byte at a time. Repeat forever...
 while (1)
 {
 i2cRecv();

 while(!SCON0_bit.TI); // Wait for UART0 Buffer to be empty
 SCON0_bit.TI = 0; // Reset TI flag
 SBUF0 = data[0]; // Send data byte 0
 while(!SCON0_bit.TI); // Wait for UART0 Buffer to be empty
 SCON0_bit.TI = 0; // reset TI flag
 SBUF0 = data[1]; // Send data byte 1
 }
}

Related Parts

MAX1169 58.6ksps, 16-Bit, 2-Wire Serial ADC in a 14-Pin TSSOP Free Samples

MAXQ2000 Low-Power LCD Microcontroller Free Samples

Page 7 of 8

http://www.maximintegrated.com/datasheet/index.mvp/id/3659
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX1169
http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3588: http://www.maximintegrated.com/an3588
APPLICATION NOTE 3588, AN3588, AN 3588, APP3588, Appnote3588, Appnote 3588
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 8 of 8

http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3588
http://www.maximintegrated.com/legal

	maxim-ic.com
	Software I²C Driver for the MAXQ2000 Microcontroller - Application Note - Maxim

