PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

General Description

The MAX20353 is a highly integrated and programmable power management solution designed for ultra-low-power wearable applications. It is optimized for size and efficiency to enhance the value of the end product by extending battery life and shrinking the overall solution size. A flexible set of power-optimized voltage regulators, including multiple bucks, boost, buck-boost, and linear regulators, provides a high level of integration and the ability to create a fully optimized power architecture. The quiescent current of each regulator is specifically suited for 1 μ A (typ) to extend battery life in always-on applications.

The MAX20353 includes a complete battery management solution with battery seal, charger, power path, and fuel gauge. Both thermal management and input protection are built into the charger.

The device also includes a factory programmable button controller with multiple inputs that are customizable to fit specific product UX requirements.

Three integrated LED current sinks are included for indicator or backlighting functions, and an ERM/LRA driver with automatic resonance tracking is capable of providing sophisticated haptic feedback to the user.

The device is configurable through an I^2C interface that allows for programming various functions and reading device status, including the ability to read temperature and supply voltages with the integrated ADC.

This device is available in a 56-bump, 0.5mm pitch 3.71mm x 4.21mm, wafer-level package (WLP) and operates over the -40°C to +85°C extended temperature range.

Applications

- Wearable Devices
- loT

Ordering Information appears at end of data sheet.

Benefits and Features

- Extend Battery Use Time Between Battery Charging
 - 2 x Micro-I_Q Buck Regulators (<1µA I_Q (typ) Each)
 350mA Output
 - Buck1: 0.7V to 2.275V in 25mV Steps
 - Buck2: 0.7V to 3.85V in 50mV Steps
 - Micro-I_Q LV LDO/Load Switch (1µA I_Q (typ))
 - 1.16V to 2.0V Input Voltage
 - 50mA Output
 - 0.5V to 1.95V Output, 25mV Steps
 - Micro-I_Q LDO/Load Switch (1µA I_Q (typ))
 - 1.71V to 5.5V Input Voltage
 - 100mA Output
 - 0.9V to 4V, 100mV Steps
 - Micro-I_Q Buck-Boost Regulator (1.3µA I_Q (typ))
 250mW Output
 - 2.5V to 5V in 100mV Steps
- Easy-to-Implement Li+ Battery Charging
 - Wide Fast Charge Current Range: 5mA to 500mA
 - Smart Power Selector
 - 28V/-5.5V Tolerant Input
 - Programmable JEITA Current/Voltage Profiles
- Minimize Solution Footprint Through High Integration
 - Safe Output LDO
 - 15mA When CHGIN Present
 - 5V or 3.3V
 - Haptic Driver
 - ERM/LRA Driver with Quick Start And Stored Pattern RAM
 - Automatic Resonance Tracking (LRA only)
 - Closed Loop Automatic Braking (LRA only)
- Support Wide Variety of Display Options
 - Micro-I_Q Boost Regulator (2.4µA I_Q (typ))
 - 300mW Output
 - 5V to 20V in 250mV Step
 - 3 Channel Current Sinks
 - 20V Tolerant
 - Programmable from 0.6 to 30mA
- Optimize System Control
 - Power-On/Reset Controller
 - Programmable Push-Button Controller
 - Programmable Supply Sequencing
 - Factory Shelf Mode
 - On-Chip Voltage Monitor Multiplexer and Analogto-Digital Converter (ADC)

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

TABLE OF CONTENTS

General Description
Applications
Benefits and Features
Absolute Maximum Ratings
Package Information
Electrical Characteristics
Typical Operating Characteristics
Bump Configuration
Bump Description
Typical Application Diagram
Detailed Description
Power Regulation
Dynamic Voltage Scaling (DVS)
Power Switch and Reset Control
Power Sequencing
Current Sink
System Load Switch
Smart Power Selector
Input Limiter
SAR ADC/Monitor MUX
JEITA Monitoring with Charger Control55
Haptic Driver
ERM
LRA
LRA Braking
Driver Amplitude
Automatic Level Compensation
Haptic UVLO
Vibration Timeout
Overcurrent/Thermal Protection
Haptic Driver Lock
Interface Modes
Pure-PWM (PPWM)
Real-Time I ² C (RTI ² C)
External Triggered Stored Pattern (ETRG)58
RAM Stored Haptic Pattern (RAMHP)59
Fuel Gauge
ModelGauge Theory of Operation61

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

TABLE OF CONTENTS (CONTINUED) Battery Voltage and State of Charge..... 62 Temperature Compensation 62 Impact of Empty-Voltage Selection 62 Battery Insertion. Battery Swap Detection 62 Alert Interrupt..... Sleep Mode Applications Information. 63 I²C Interface 63 64 Bit Transfer..... Single-Byte Write Single Byte Read 65 Acknowledge Bits..... Application Processor Interface .67 AP Read 67 Write-Protected Commands and Fields. 67 Direct Access I²C Register Map 68 Direct Access I²C Register Descriptions..... 70 Interrupt Registers. .70 Interrupt Mask Registers..... . 75 Buck1 DVS Registers 80

Haptic Braking Registers

83

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

TABLE OF CONTENTS (CONTINUED)

Haptic RAM Registers	84
LED Direct Registers	85
Haptic Direct Registers	87
AP Command Register Descriptions	90
GPIO Config Commands	90
Input Current Limit Commands	95
Thermal Shutdown Configuration Commands	96
Charger Configuration Commands	
Boost Configuration Commands.	106
Buck Configuration Commands	108
LDO Configuration Commands.	114
Charge Pump Configuration Commands	118
SFOUT Configuration Commands	119
MON Mux Configuration Commands	121
Buck-Boost Configuration Commands	123
Haptic Configuration Commands	125
Power and Reset Commands	138
Register Summary	141
VCELL Register (0x02)	141
SOC Register (0x04)	141
MODE Register (0x06)	141
VERSION Register (0x08)	141
Fuel Gauge I ² C Registers	141
HIBRT Register (0x0A)	142
CONFIG Register (0x0C)	142
VALRT Register (0x14)	143
CRATE Register (0x16)	143
VRESET/ID Register (0x18)	143
STATUS Register (0x1A).	144
Reset Indicator:	144
Alert Descriptors:	144
Enable or Disable VRESET Alert:	144
TABLE Registers (0x40 to 0x7F)	144
CMD Register (0xFE)	144
Ordering Information	153
Chip Information	
Revision History	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

LIST OF FIGURES

Figure 1a. PwrRstCfg = 0000 or 0001	45
Figure 1b. PwrRstCfg = 0010 or 0011	46
Figure 1c. PwrRstCfg = 0100 or 0101	47
Figure 1d. PwrRstCfg = 0110	48
Figure 1e. PwrRstCfg = 0111	49
Figure 1f. PwrRstCfg = 1000	50
Figure 2. The full MAX20353 Boot Sequence	52
Figure 3. Reset Sequence Programming	53
Figure 4a. Sample JEITA Pre Charge Profile	55
Figure 4b. Sample JEITA Fast Charge Profile	55
Figure 4c. Sample JEITA Maintain Charge Profile	56
Figure 5. Charger State Diagram	56
Figure 6. Read and Write Processes for RAM	59
Figure 7a. Sample Pattern Stored in RAM	61
Figure 7b. Haptic Driver Output of Stored Pattern	61
Figure 8. I ² C START, STOP and REPEATED START Conditions	63
Figure 9. Write Byte Sequence	64
Figure 10. Burst Write Sequence	65
Figure 11. Read Byte Sequence	65
Figure 12. Burst Read Sequence	66
Figure 13. Acknowledge	66
Figure 14. Executing a Write Opcode and Reading the MAX20353 Response	67
Figure 15. Executing a Read Opcode and Reading the MAX20353 Response	
Figure 16. MODE Register Format	142
Figure 17. HIBRT Register Format	142
Figure 18. CONFIG Register Format	142
Figure 19. VALRT Register Format	143
Figure 20. VRESET/ID Register Format	143
Figure 21. STATUS Register Format	144

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 1. Buck1 DVS MPC Values 44 Table 2. PwrRstCfg Settings 51 Table 3. SAR ADC Full-Scale Voltages and Conversions. 55 Table 4. RAMHP Pattern Storage Format..... 60 Table 5. HardwareID Register (0x00). 70 Table 6. FirmwareID Register (0x01) 70 70 Table 8. Int1 Register (0x04) 70 Table 9. Int2 Register (0x05) 71 Table 10. Status0 Register (0x06) 71 Table 11. Status1 Register (0x07) 72 Table 12. Status2 Register (0x08) 73 Table 13. Status3 Register (0x09) 73 Table 15. IntMask0 Register (0x0C). 75 Table 16. IntMask1 Register (0x0D). 76 78 Table 20. APDataOut2 Register (0x11) 78 Table 21. APDataOut3 Register (0x12) 78 Table 22. APDataOut4 Register (0x13) 78 Table 23. APDataOut5 Register (0x14) 79 Table 24. APDataOut6 Register (0x15) 79 Table 25. APCmdOut Register (0x17) 79 Table 26. APResponse Register (0x18). 79 Table 27. APDataIn0 Register (0x19)..... 79 Table 28. APDataIn1 Register (0x1A) 79 Table 29. APDataIn2 Register (0x1B) 80 Table 30. APDataIn3 Register (0x1C) 80 Table 31. APDataIn4 Register (0x1D) 80 Table 32. APDataIn5 Register (0x1E) 80 Table 33. Buck1I2CDVS Register (0x1F)..... 80 Table 34. LDODirect Register (0x20). 81 Table 35. MPCDirectWrite Register (0x21) 81

LIST OF TABLES

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 36. MPCDirectRead Register (0x22) 82 Table 37. DVSVIt1 Register (0x23)..... 82 82 Table 39. DVSVIt3 Register (0x25) 83 Table 40. AutoBrkCfg0 Register (0x26)..... 83 Table 41. AutoBrkCfg1 Register (0x27) 84 Table 42. HptRAMAddr Register (0x28) 84 84 Table 44. HptRAMDataM Register (0x2A)..... 84 84 Table 46. LEDStepDirect Register (0x2C) 85 Table 47. LED0Direct Register (0x2D) Image: Control of the 85 Table 49. LED2Direct Register (0x2F)..... 86 Table 50. HptDirect0 Register (0x30). 87 Table 51. HptDirect1 Register (0x31) 88 Table 52. HptRTI2CAmp Register (0x32). 89 Table 53. HptPatRAMAddr Register (0x33). 89 Table 54. 0x01 – GPIO_Config_Write 90 Table 55. GPIO Config Write Response 91 Table 56. 0x02 – GPIO Config Read..... 91 Table 57. GPIO_Config_Read Response 91 Table 58. 0x03 – GPIO Control Write Write 91 Table 59. GPIO Control Write Response 92 Table 60. 0x04 – GPIO Control Read 92 Table 61. GPIO Control Read Response Read 92 Table 62. 0x06 – MPC Config Write Write 92 Table 63. MPC Config Write Response Config Write Response 94 Table 65. MPC Config Read Response. 94 Table 67. InputCurrent Config Write Response 95 Table 68. 0x11 – InputCurrent Config Read 95 Table 69. InputCurrent Config Read Response. 96

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 71. ThermalShutdown_Config_Read Response	
Table 72. 0x14 – Charger_Config_Write	
Table 73. Charger_Config_Write Response	
Table 74. 0x15 – Charger_Config_Read	
Table 75. Charger_Config_Read Response	
Table 76. 0x16 – ChargerThermalLimits_Config_Write	
Table 77. ChargerThermalLimits_Config_Write Response	
Table 78. 0x17 – ChargerThermalLimits_Config_Read.	
Table 79. ChargerThermalLimits_Config_Read Response	
Table 80. 0x18 – ChargerThermalReg_Config_Write Config_Write	
Table 81. ChargerThermalReg_Config_Write Response.	
Table 82. 0x19 – ChargerThermalReg_Config_Read	
Table 83. ChargerThermalReg_Config_Read Response	
Table 84. 0x1A – Charger_ControlWrite	
Table 85. Charger_ControlWrite Response	
Table 86. 0x1B – Charger_ControlRead	
Table 87. Charger_Control_Read Response	
Table 88. 0x1C – Charger_ JEITAHyst_ControlWrite	
Table 89. Charger_JEITAHyst_ControlWrite Response	
Table 90. Charger_JEITAHyst_ControlRead	
Table 91. Charger_JEITAHyst_ControlRead Response	
Table 92. 0x30 – Bst_Config_Write.	
Table 93. Bst_Config_Write Response	
Table 94. 0x31 – Bst_Config_Read.	
Table 95. Bst_Config_Read Response	
Table 96. 0x35 – Buck1_Config_Write	
Table 97. Buck1_Config_Write Response	
Table 98. 0x36 – Buck1_Config_Read	
Table 99. Buck1_Config_Read Response.	
Table 100. 0x37 – Buck1_DVSConfig_Write	
Table 101. Buck1_DVSConfig_Write Response	
Table 102. 0x3A – Buck2_Config_Write	
Table 103. Buck2_Config_Write Response	
Table 104. 0x3B – Buck2_Config_Read	
Table 105. Buck2_Config_Read Response.	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 106. 0x3C – Buck2_DVSConfig_Write	113
Table 107. Buck2_DVSConfig_Write Response	114
Table 108. 0x40 – LDO1_Config_Write	114
Table 109. LDO1_Config_Write Response	115
Table 110. 0x41 – LDO1_Config_Read	115
Table 111. LDO1_Config_Read Response	115
Table 112. 0x42 – LDO2_Config_Write	116
Table 113. LDO2_Config_Write Response	117
Table 114. 0x43 – LDO2_Config_Read	117
Table 115. LDO2_Config_Read Response	117
Table 116. 0x46 – ChargePump_Config_Write	118
Table 117. ChargePump_Config_Write Response.	118
Table 118. 0x47 – ChargePump_Config_Read	118
Table 119. ChargePump_Config_Read Response	119
Table 120. 0x48 – SFOUT_Config_Write	119
Table 121. SFOUT_Config_Write Response	120
Table 122. 0x49 – SFOUT_Config_Read	. 120
Table 123. SFOUT_Config_Read Response	. 120
Table 124. 0x50 – MONMux_Config_Write	121
Table 125. MONMux_Config_Write Response	121
Table 126. 0x51 – MONMux_Config_Read	121
Table 127. MONMux_Config_Read Response	. 122
Table 128. 0x53 – ADC_Measure_Launch	. 122
Table 129. ADC_Measure_Launch Response	. 122
Table 130. 0x70 – BBst_Config_Write	123
Table 131. BBst_Config_Write Response	124
Table 132. 0x71 – BBst_Config_Read	. 124
Table 133. BBst_Config_Read Response	124
Table 134. 0xA0 – Hpt_Config_Write0	125
Table 135. Hpt_Config_Write0 Response	. 126
Table 136. 0xA1 – Hpt_Config_Read0	. 126
Table 137. Hpt_Config_Read0 Response	127
Table 138. 0xA2 – Hpt_Config_Write1	. 127
Table 139. Hpt_Config_Write1 Response	128
Table 140. 0xA3 – Hpt_Config_Read1	128

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 142. 0xA4 — Hpt_Config_Write2 129 Table 143. Hpt_Config_Write2 Response 130 Table 144. 0xA5 - Hpt_Config_Read2 130 Table 145. Hpt_Config_Read2 Response 130 Table 145. Hpt_Config_Read2 Response 130 Table 146. 0xA6 - Hpt_SYS_Threshold_Config_Write 130 Table 146. 0xA6 - Hpt_SYS_Threshold_Config_Write 130 Table 147. Hpt_SYS_threshold_Config_Write Response 130 Table 148. 0xA7—Hpt_SYS_threshold_Config_Read 131 Table 149. Hpt_SYS_threshold_Config_Read 133 Table 150. 0xA8 - Hpt_Lock_Config_Write 133 Table 151. Hpt_Lock_Config_Read 133 Table 152. 0xA9 - Hpt_Lock_Config_Read 133 Table 153. Hpt_Lock_Config_Read Response 133 Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write 133 Table 155. Hpt_EMF_Threshold_Config_Write 133 Table 155. Hpt_EMF_Threshold_Config_Write Response 133 Table 156. 0xAB - Hpt_EMF_Threshold_Config_Read 133 Table 156. 0xAB - Hpt_EMF_Threshold_Config_Read 133 Table 156. 0xAB - Hpt_EMF_Threshold_Config_Read 134 Table 156. 0xAB - Hpt_EMF_Threshold_Config_Read 134 <
Table 144. 0xA5 - Hpt_Config_Read2130Table 145. Hpt_Config_Read2 Response130Table 145. Hpt_Config_Read2 Response130Table 146. 0xA6 - Hpt_SYS_Threshold_Config_Write130Table 147. Hpt_SYS_threshold_Config_Write Response130Table 148. 0xA7—Hpt_SYS_threshold_Config_Read130Table 149. Hpt_SYS_threshold_Config_Read Response131Table 150. 0xA8 - Hpt_Lock_Config_Write131Table 151. Hpt_Lock_Config_Write Response131Table 152. 0xA9 - Hpt_Lock_Config_Read131Table 153. Hpt_Lock_Config_Read131Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write132Table 155. Hpt_EMF_Threshold_Config_Write Response132Table 155. Hpt_EMF_Threshold_Config_Write Response132Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write Response132Table 155. Hpt_EMF_Threshold_Config_Write Respon
Table 145. Hpt_Config_Read2 Response130Table 146. 0xA6 - Hpt_SYS_Threshold_Config_Write130Table 147. Hpt_SYS_threshold_Config_Write Response130Table 148. 0xA7—Hpt_SYS_threshold_Config_Read137Table 149. Hpt_SYS_threshold_Config_Read Response137Table 149. Hpt_SYS_threshold_Config_Read Response137Table 150. 0xA8 - Hpt_Lock_Config_Write137Table 151. Hpt_Lock_Config_Write Response137Table 152. 0xA9 - Hpt_Lock_Config_Read137Table 153. Hpt_Lock_Config_Read137Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write132Table 155. Hpt_EMF_Threshold_Config_Write Response132Table 155. Hpt_State<
Table 146. 0xA6 - Hpt_SYS_Threshold_Config_Write130Table 147. Hpt_SYS_threshold_Config_Write Response130Table 148. 0xA7Hpt_SYS_threshold_Config_Read137Table 149. Hpt_SYS_threshold_Config_Read Response137Table 150. 0xA8 - Hpt_Lock_Config_Write137Table 151. Hpt_Lock_Config_Write Response137Table 152. 0xA9 - Hpt_Lock_Config_Read137Table 153. Hpt_Lock_Config_Read137Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write137Table 155. Hpt_EMF_Threshold_Config_Write Response137Table 155.
Table 147. Hpt_SYS_threshold_Config_Write Response130Table 148. 0xA7—Hpt_SYS_threshold_Config_Read137Table 149. Hpt_SYS_threshold_Config_Read Response137Table 150. 0xA8 - Hpt_Lock_Config_Write137Table 151. Hpt_Lock_Config_Write Response137Table 152. 0xA9 - Hpt_Lock_Config_Read137Table 153. Hpt_Lock_Config_Read137Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write132Table 155. Hpt_EMF_Threshold_Config_Write Response132Table 155. Hpt_EMF_Threshold_Config_Write Response132
Table 148. 0xA7—Hpt_SYS_threshold_Config_Read.137Table 149. Hpt_SYS_threshold_Config_Read Response.137Table 150. 0xA8 - Hpt_Lock_Config_Write.137Table 151. Hpt_Lock_Config_Write Response.137Table 152. 0xA9 - Hpt_Lock_Config_Read.137Table 153. Hpt_Lock_Config_Read.137Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write.137Table 155. Hpt_EMF_Threshold_Config_Write Response.137Table 155. Hpt_State.137Table 155. Hpt_State.137Table 155. Hpt_State.137Table 155. Hpt_State.137Table 155. Hpt_State </td
Table 149. Hpt_SYS_threshold_Config_Read Response137Table 150. 0xA8 - Hpt_Lock_Config_Write137Table 151. Hpt_Lock_Config_Write Response137Table 152. 0xA9 - Hpt_Lock_Config_Read137Table 153. Hpt_Lock_Config_Read137Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write132Table 155. Hpt_EMF_Threshold_Config_Write Response132Table 155. Hpt_EMF_Threshold_Config_Write Response132
Table 150. 0xA8 - Hpt_Lock_Config_Write .137 Table 151. Hpt_Lock_Config_Write Response .137 Table 152. 0xA9 - Hpt_Lock_Config_Read .137 Table 153. Hpt_Lock_Config_Read Response .137 Table 154. 0xAA - Hpt_EMF_Threshold_Config_Write .137 Table 155. Hpt_EMF_Threshold_Config_Write Response .137 Table 155. Hpt_EMF_Threshold_Config_Write .137 Table 155. Hpt_EMF_Threshold_Config_Write Response .137 Table 155. Hpt_EMF_Threshold_Config_Write Response .137
Table 151. Hpt_Lock_Config_Write Response .137 Table 152. 0xA9 – Hpt_Lock_Config_Read .137 Table 153. Hpt_Lock_Config_Read Response .137 Table 154. 0xAA – Hpt_EMF_Threshold_Config_Write .132 Table 155. Hpt_EMF_Threshold_Config_Write Response .132 Table 155. Hpt_EMF_Threshold_Config_Write Response .132
Table 152. 0xA9 – Hpt_Lock_Config_Read
Table 153. Hpt_Lock_Config_Read Response
Table 154. 0xAA – Hpt_EMF_Threshold_Config_Write 132 Table 155. Hpt_EMF_Threshold_Config_Write Response 132
Table 155. Hpt_EMF_Threshold_Config_Write Response 132
Table 156. 0xAB – Hpt_EMF_Threshold_Config_Read 132
Table 157. HPT_EMF_Threshold_Config_Read Response. 132
Table 158. 0xAC—HPT_Autotune 132
Table 159. HPT_Autotune Response. 133
Table 160. 0xAD— HPT_SetMode 133
Table 161. HPT_SetMode Response 133
Table 162. 0xAE— HPT_SetInitialGuess. 133
Table 163. HPT_SetInitialGuess Response. 133
Table 164. 0xAF— HPT_SetInitialDelay 134
Table 165. HPT_SetInitialDelay Response 134
Table 166. 0xB0—HPT_SetWindow 134
Table 167. HPT_SetWindow Response 134
Table 168. 0xB1 – HPT_SetBackEMFCycle 134
Table 169. HPT_SetBackEMFCycle Response 134
Table 170. 0xB2—HPT_SetFullScale. 135
Table 171. HPT_SetFullScale Response 135

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 172. 0xB3—Hpt_SetHptPattern	135
Table 173. Hpt_SetHptPattern Response	135
Table 174. 0xB4—Hpt_SetGain	135
Table 175. Hpt_SetGain Response	135
Table 176. 0xB5—HPT_SetLock	136
Table 177. Hpt_SetLock Response	136
Table 178. 0xB6—Hpt_ReadResonanceFrequency	136
Table 179. Hpt_ReadResonanceFrequency Response.	136
Table 180. 0xB7—Hpt_SetTimeout	136
Table 181. Hpt_SetTimeout Response	136
Table 182. 0xB8—Hpt_GetTimeout.	137
Table 183. Hpt_GetTimeout Response	137
Table 184. 0xB9—Hpt_SetBlankingWindow	. 137
Table 185. Hpt_SetBlankingWindow Response	137
Table 186. 0xBA—Hpt_SetZCC	
Table 187. Hpt_SetZCC Response	137
Table 188. 0x80—PowerOff_Command	138
Table 189. PowerOff_Command Response	138
Table 190. 0x81 – SoftReset_Command	138
Table 191. SoftReset_Command Response	138
Table 192. 0x82—Hard-Reset_Command.	139
Table 193. Hard-Reset_Command Response.	139
Table 194. 0x83—StayOn_Command	139
Table 195. 0x83—StayOn_Command Response	140
Table 196. 0x84—PowerOff_Command_Delay	140
Table 197. PowerOff_Command_Delay Response	140
Table 198. Register Summary	. 141
Table 199. Haptic Driver Recommended Default Values.	145
Table 200. Haptic Driver Recommended Default Values	
Table 201. Register Bit Default Values.	. 147
Table 202. Register Bit Default Values	149
Table 203. I ² C Direct Register Default Values	149
Table 204. Read Opcode Default Values.	150

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Absolute Maximum Ratings

BAT, SYS, MON, PFN1, PFN2, THM, INT, RST,	BSTHVLX to BSTOUT22V to +0.1V
SDA, SCL, CELL, ALRT, CTG, QSTRT, L2IN,	BBHVLX0.3V to min (BBOUT + 0.3, +6)V
BBOUT0.3V to	+6V AGND, DGND, BK1GND, BK2GND, BSTGND,
VDIG, L1IN0.3V to +2	HDGND, BBGND to GSUB0.3V to +0.3V
CHGIN6V to +	30V Continuous Current into BAT,
CAP, SFOUT0.3V to min(CHGIN + 0.3, -	6)V SYS, CHGIN1000mA to +1000mA
TPU0.3V to VDIG + (.3V Continuous Current into DRP, DRN
SET0.3V to BAT + (0.3V Continuous Current into Any Other Terminal100mA to +100mA
MPC0, MPC1, MPC2, MPC3, MPC4, DRP,	Continuous Power Dissipation (multilayer board
DRN, BK1LX, BK2LX, BK1OUT, BK2OUT,	at +70°C): 7 x 8 Array 56-Ball, 3.71mm x
CPP, BSTLVLX, BBLVLX0.3V to SYS + (0.3V 4.21mm, 0.5mm pitch WLP (derate 29.98mW/°C)2399mW
L1OUT0.3V to L1IN + (0.3V Operating Temperature Range40°C to +85°C
L2OUT0.3V to L2IN + (0.3V Junction Temperature+150°C
CPP CPN – 0.3V to CPN -	6V Storage Temperature Range65°C to +150°C
CPOUT CPP - 0.3V to min(CPP + 6, +*	2)V Lead Temperature (soldering, 10s)+300°C
BSTHVLX, BSTOUT, LED0, LED1, LED20.3V to +	
,, _,	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

PACKAGE TYPE: 56 WLP				
Package Code	W563A4+1			
Outline Number	<u>21-100104</u>			
Land Pattern Number	Refer to Application Note 1891			
THERMAL RESISTANCE, FOUR-LAYER BOARD				
Junction to Ambient (θ_{JA})	33.35°C/W			

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to **www.maximintegrated.com/thermal-tutorial**.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GLOBAL SUPPLY CURRE	NT					
Charger Input Current	ICHGIN	V _{CHGIN} = +5V, On state, charger disabled, Buck1 enabled, no LDO enabled		1.1		mA
		V _{CHGIN} = 0V, Off state, LDO2 disabled		0.4		
		V _{CHGIN} = 0V, Off state, LDO2 enabled, L2IN connected to BAT		1.6		
BAT Input Current	I _{BAT}	V _{CHGIN} = 0V, On state, all blocks disabled, Fuel Gauge off	2.4			μΑ
		V _{CHGIN} = 0V, On state, Buck1 enabled, Fuel Gauge off	3.4			
		V _{CHGIN} = 0V, On state, Buck1 and Buck2 enabled, Fuel Gauge off	3.9			
INTERNAL SUPPLIES, BIA	AS, AND UVLOS	·				
V _{CCINTUVLO} Rising Threshold	V _{VCCINT} _ UVLO_R	(Note 2)	2.25	2.45	2.75	V
V _{CCINTUVLO} Falling Threshold	V _{VCCINT} _ UVLO_F	(Note 2)	2.2	2.4	2.7	V
V _{CCINTUVLO} Threshold Hysteresis	V _{VCCINT} _ UVLO_H	(Note 2)		50		mV
Internal CAP Regulator	V _{CAP}	V _{CHGIN} = +4.3V to +28V	3.75	4.1	4.55	V
CAPOK Rising Threshold	VCAP_OK_R	V _{CHGIN} = V _{CAP}	3.15	3.4	3.6	V
CAPOK Falling Threshold	V _{CAP_OK_F}	V _{CHGIN} = V _{CAP}	2.6	2.8	3	V
CAPOK Threshold Hysteresis	V _{CAP_OK_H}			600		mV
V _{BDET} Rising Threshold	V _{CHGIN_} DET_R		4	4.15	4.3	V
V _{BDET} Falling Threshold	V _{CHGIN} _ DET_F		3.2	3.3	3.4	V
V _{BDET} Threshold Hysteresis	V _{CHGIN} _ DET_H			850		mV
CHGIN Detection tCHGIN_DET_R Debounce Time tCHGIN_DET_F		CHGIN insertion	28		me	
		CHGIN detachment		20		ms
SYSUVLO Rising Threshold	VSYS_UVLO_R		2.65	2.75	2.85	V
SYSUVLO Falling Threshold	VSYS_UVLO_F		2.6	2.7	2.8	V
SYSUVLO Threshold Hysteresis	V _{SYS_UVLO_H}			50		mV

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
BATOC Rising Threshold	IBAT_OC_R	From 200mA to 1.6A in 200mA steps, Device specific (See Table 201)	-40		+40	%	
BATOC Threshold Hysteresis	IBAT_OC_H			6		%	
BATOC Rising Debounce Time	^t BAT_OC_D		9	10	11	ms	
Internal V _{DIG} Regulator	V _{VDIG}		1.68	1.8	2.0	V	
V _{DIGUVLO} Rising Threshold	V _{VDIG_UVLO_R}		1.61		1.71	V	
V _{DIGUVLO} Falling Threshold	VVDIG_UVLO_F		1.51		1.61	V	
V _{DIGUVLO} Threshold Hysteresis	VVDIG_UVLO_H			100		mV	
SFOUT	•						
		SFOUTVSet = 0 (+5V), V _{CHGIN} = +6V, I _{SFOUT} = 0mA	4.85	5	5.15		
SFOUT LDO Voltage	V _{SFOUT}	SFOUTVSet = 0 (+5V), V _{CHGIN} = +5V, I _{SFOUT} = 15mA		4.9			
		SFOUTVSet = 1 (+3.3V), V _{CHGIN} = +5V, I _{SFOUT} = 0mA	3.15	3.3	3.45		
		SFOUTVSet = 1 (+3.3V), V _{CHGIN} = +5V, I _{SFOUT} = 15mA		3.29		1	
SFOUT OVP Voltage	V _{SFOUT_OVP}	SFOUT LDO is turned off above V _{CHGIN_OV_R} threshold		V _{CHGIN} OV_R		V	
SFOUT Thermal Limit	T _{SFOUT_LIM}			150		°C	
SAR ADC AND MON							
ADC Quiescent Current	I ADC_Q	Conversion running		30		μA	
ADC SYS Divider Resistance	R _{ADC_SYS_} DIV	SYS conversion running		2.2		MΩ	
ADC MON Divider Resistance	R _{ADC_MON_} DIV	MON conversion running		2.2		MΩ	
ADC CHGIN Divider Resistance	R _{ADC_CHGIN_} DIV	CHGIN conversion running		1.1		MΩ	
ADC CPOUT Divider Resistance	R _{ADC_CPOUT_}	CPOUT conversion running		0.82		MΩ	
ADC BSTOUT Divider Resistance	R _{ADC_BSTOUT}	BSTOUT conversion running		0.89		MΩ	
ADC SYS Least Significant Bit	V _{ADC_SYS} LSB			21.57		mV	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONE	DITIONS	MIN	TYP	MAX	UNITS
ADC MON Least Significant Bit	V _{ADC_MON_} LSB						mV
ADC THM Least Significant Bit	V _{ADC_THM_} LSB				0.39		%V _{DIG}
ADC CHGIN Least Significant Bit	V _{ADC_CHGIN_} LSB				32.35		mV
ADC CPOUT Least Significant Bit	V _{ADC_CPOUT_} LSB				32.35		mV
ADC BSTOUT Least Significant Bit	V _{ADC} _ BSTOUT_LSB				82.35		mV
ADC SYS Absolute Sensing	VADC_SYS	V _{SYS} = +2.6V		-55		+55	mV
Worst-Case Accuracy	ACC	V _{SYS} = +5.5V		-96		+96	IIIV
ADC MON Absolute Sensing	VADC_MON_	V _{MON} = +1.0V		-35		+35	mV
Worst-Case Accuracy	ACC	V _{MON} = +5.5V		-96		+96	IIIV
ADC THM Percentage Sensing Worst-Case Accuracy	V _{ADC_THM_} ACC	V _{THM} = (5 to 95)%V _{DIG}		-1.539		+1.539	%V _{DIG}
ADC CHGIN Absolute	VADC CHGIN	V _{CHGIN} = +3.0V		-70		+70	
Sensing Worst-Case Accuracy	ACC	V _{CHGIN} = +8.0V		-139		+139	mV
ADC CPOUT Absolute	VADC_CPOUT_	V _{CPOUT} = +5.0V		-97		+97	
Sensing Worst-Case Accuracy	ACC	V _{CPOUT} = +6.6V		-119		+119	mV
ADC BSTOUT Absolute	V _{ADC}	V _{BSTOUT} = +3.0V		-122		+122	mV
Sensing Worst-Case Accuracy	BSTOUT_ACC	V _{BSTOUT} = +21.0V		-359		+359	
ADC Conversion Time	^t ADC_CONV	1.1ms (typ) additional delay prior to each 1 st conversion.			83		μs
THM Input Leakage	I _{LK_THM}			-1		+1	μA
TPU Switch Resistance	R _{TPU_SW}	1mA max load on T	PU		4		Ω
MON Multiplexer Output	V _{MON_DIV_RT}	No load on MON pin. Inputs: BAT, SYS, BK10UT, BK20UT, L10UT, L20UT, SF0UT,	MonRatioCfg = 00		100		
			MonRatioCfg = 01		50		%
Ratio			MonRatioCfg = 10		33.33		
		BBOUT	MonRatioCfg = 11		25		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
MON Multiplexer Output		100µA load on MON pin. Inputs: BAT, SYS, BK2OUT, BK1OUT, L2OUT, L1OUT, SFOUT, BBOUT	MonRatioCfg = 00		5.5		
Impedance	R _{MON_DIV}	No load on MON pin. Inputs: BAT,	MonRatioCfg = 01		31		kΩ
		SYS, BK2OUT, BK1OUT, L2OUT,	MonRatioCfg = 10		28		
		L1OUT, SFOUT, BBOUT	MonRatioCfg = 11		24		
MON Multiplexer Off State Pulldown Resistance	R _{MON_OFF_PD}	MON disabled, pull enabled	down resistance		59		kΩ
OVP AND INPUT CURREN	IT LIMITER						
Allowed CHGIN Input Voltage Range	V _{CHGIN_RNG}			-5.5		+28	V
CHGIN Overvoltage Rising Threshold	VCHGIN_OV_R	SFOUT LDO is turr threshold	ned off above this	7.2	7.5	7.8	V
CHGIN Overvoltage Threshold Hysteresis	V _{CHGIN_OV_H}				200		mV
CHGIN Valid Trip Point	V _{CHGN-SYS_TP}	V _{CHGIN} - V _{SYS}		30	145	290	mV
CHGIN Valid Trip Point Hysteresis	V _{CHGIN-SYS} TP-HYS				275		mV
Input Overcurrent Max Limit (t < t _{ILIM_BLANK})	I _{LIM_MAX}	ILimMax = 0/1, dev (see Table 201)	ice specific		450/1000		mA
		ILimCnt = 000			50		
		ILimCnt = 001			90		
		ILimCnt = 010			150		
Input Current Limit		ILimCnt = 011			200		mA
$(t > t_{ILIM_BLANK})$	ILIM	ILimCnt = 100		300			
		ILimCnt = 101		400			1
		ILimCnt = 110		450			_
		ILimCnt = 111			1000		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
		ILimBlank = 00		0.003				
Input Current Limit		ILimBlank = 01		0.5		1		
Blanking Time	^t ILIM_BLANK	ILimBlank = 10		1		ms		
		ILimBlank = 11		10				
SYS Regulation Voltage	V _{SYS_REG}		V _{BAT_} REG ⁺ 0.14	V _{BAT_} REG + 0.2	V _{BAT_} REG ⁺ 0.26	v		
SYS Regulation Voltage Dropout	V _{CHGIN-SYS}			40		mV		
CHGIN to SYS On- Resistance	R _{CHGIN-SYS}			0.37	0.66	Ω		
Input Current Soft-Start Time	I _{LIM_SFT}			1		ms		
				50				
				60		1		
Thermal Shutdown				70		1		
		See T _{CHGIN} SHDN in table 201 for		80				
Temperature	TCHGIN_SHDN	device specific threshold		90		°C		
				100		1		
				110		-		
				120				
		TShdnTmo = 01		0.5				
Thermal Shutdown	TCHGIN_SHDN_	TShdnTmo = 10		1		s		
Timeout	то	TShdnTmo = 11		5				
BATTERY CHARGER	1					1		
BAT to SYS On Resistance	R _{BAT-SYS}	V _{BAT} = 4.2V, I _{BAT} = 300mA		80	140	mΩ		
Thermal Regulation Temperature	T _{CHG_LIM}			T _{CHGIN_} SHDN - 3		°C		
BAT-to-SYS Switch On Threshold	V _{BAT-SYS_ON}	SYS falling	10	22	35	mV		
BAT-to-SYS Switch Off Threshold	V _{BAT-SYS_OFF}	SYS rising	-3	-1.5	0	mV		
SYS-BAT Charge Current Reduction Threshold	V _{SYS-BAT_LIM}	Measured as V _{SYS} - V _{BAT} , SysMinVlt = 000, V _{BAT} > 3.6V		100		mV		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CC	NDITIONS	MIN	TYP	MAX	UNITS	
			SysMinVIt = 000		3.6			
			SysMinVIt = 001		3.7		1	
			SysMinVIt = 010		3.8			
	N		SysMinVIt = 011		3.9			
Minimum SYS Voltage	V _{SYS_LIM}	V _{BAT} < 3.4V	SysMinVIt = 100		4.0			
			SysMinVIt = 101		4.1			
			SysMinVIt = 110		4.2			
			SysMinVIt = 111		4.3			
Charger Current Soft-Start Time	^t CHG_SOFT				1		ms	
Precharge Current		IPChg = 00			5			
	IPCHG	IPChg = 01		9	10	11	%I _{FCHG}	
		IPChg = 10			20			
		IPChg = 11			30			
		VPChg = 000			2.1			
		VPChg = 001			2.25			
		VPChg = 010			2.4			
Precharge Threshold		VPChg = 011		2.55		v		
Flecharge mieshold	V _{BAT_PCHG}	VPChg = 100	VPChg = 100		2.7			
		VPChg = 101			2.85			
		VPChg = 110			3			
		VPChg = 111			3.15			
Precharge Threshold Hysteresis	V _{BAT_PCHG_} HYS				90		mV	
SET Current Gain Factor	K _{SET}				2000		A/A	
SET Regulation Voltage	V _{SET}				1		V	
		$R_{SET} = 400 k\Omega$			5			
BAT Charge Current Set Range	I _{FCHG} R	$R_{SET} = 40k\Omega$		45	50	55	mA	
		$R_{SET} = 4k\Omega$			500		-	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
		BatReg = 0000		4.05			
		BatReg = 0001		4.10		1	
		BatReg = 0010		4.15		1	
		BatReg = 0011, T _A = 25°C	4.179	4.20	4.221	1	
		BatReg = 0011	4.158	4.20	4.242	1	
		BatReg = 0100		4.25		1	
Battery Regulation Voltage	V _{BAT_REG}	BatReg = 0101		4.30		V	
voltage	_	BatReg = 0110		4.35		1	
		BatReg = 0111		4.40		1	
		BatReg = 1000		4.45		1	
		BatReg = 1001		4.50		1	
		BatReg = 1010		4.55		-	
		BatReg = 1011		4.60			
		BatReChg = 00		70			
Battery Recharge		BatReChg = 01		120			
Threshold	VBAT_RECHG	BatReChg = 10		170		- mV	
		BatReChg = 11		220		1	
		PChgTmr = 00		30			
Maximum Precharge		PChgTmr = 01		60		- min	
Time	^t PCHG	PChgTmr = 10		120			
		PChgTmr = 11		240		1	
		FChgTmr = 00		75			
Maximum Fast Charge		FChgTmr = 01		150			
Time	^t FCHG	FChgTmr = 10		300		– min	
		FChgTmr = 11		600	-		
		ChgDone = 00		5			
Charge Done	.	ChgDone = 01	8.5	10	11.5		
Qualification	ICHG_DONE	ChgDone = 10		20		%I _{FCHG}	
		ChgDone = 11		30]	
Timer Accuracy	tCHG_ACC		-10		10	%	
Timer Extend Threshold (1/2 Fast Charge Current Comparator)	tCHG_EXT	See Figure 5		50		%I _{FCHG}	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS	
Timer Suspend Threshold (1/5 Fast Charge Current Comparator)	^t CHG_SUS	See Figure 5	20		%I _{FCHG}	
THM Percentage Sensing Worst Case Accuracy	V _{ADC_THM_} ACC	V _{THM} = (5 to 95)%V _{DIG}	see ADC section			
Cool/Cold Threshold Hysteresis		Falling, LSB = 0.39%V _{DIG}	0 to 31		LSB	
Warm/Hot Threshold Hysteresis		Rising, LSB = 0.39%V _{DIG}	0 to 31		LSB	
		Cold/Cool/Room/Warm/ HotBatReg = 00	BatReg – 150mV			
Battery Regulation Voltage Reduction Due to Battery Pack Temperature	V _{BAT_REG_}	Cold/Cool/Room/Warm/ HotBatReg = 01	BatReg – 100mV			
	RED	Cold/Cool/Room/Warm/ HotBatReg = 10	BatReg – 50mV			
		Cold/Cool/Room/Warm/ HotBatReg = 11	BatReg			
		Cold/Cool/Room/Warm/ HotFChg = 000	I _{FCHG} × 0.2			
		Cold/Cool/Room/Warm/ HotFChg = 001	I _{FCHG} × 0.3			
		Cold/Cool/Room/Warm/ HotFChg = 010	I _{FCHG} × 0.4			
Fast Charge Current		Cold/Cool/Room/Warm/ HotFChg = 011	I _{FCHG} × 0.5			
Reduction Due to Battery Pack Temperature	IFCHG_FACT	Cold/Cool/Room/Warm/ HotFChg = 100	I _{FCHG} × 0.6		– mA	
		Cold/Cool/Room/Warm/ HotFChg = 101	I _{FCHG} × 0.7			
		Cold/Cool/Room/Warm/ HotFChg = 110	I _{FCHG} × 0.8			
		Cold/Cool/Room/Warm/ HotFChg = 111	IFCHG			
BAT UVLO Threshold	V _{BAT_UVLO}		1.9 2.05	2.2	V	
BAT UVLO Threshold Hysteresis	V _{BAT_UVLO_} HYS		50		mV	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BUCK1	L		1			
Input Voltage Range	V _{BK1IN}	Input voltage = V _{SYS}	2.7		5.5	V
Output Voltage Range	V _{BK1OUT}	25mV step resolution	0.7		2.275	V
Output Voltage UVLO	V _{UVLO_BK1}	Rising edge, typical hysteresis = 70mV			0.62	V
Quiescent Supply Current	I _{Q_BK1}	I _{BK1OUT} = 0, V _{SYS} = +3.7V, Buck1VSet = 0b010100 (+1.2V)		0.8	1.3	μA
Dropout Quiescent Supply Current	I _{Q_DO_BK1}	$I_{BK1OUT} = 0, V_{SYS} - V_{BK1OUT} \le +0.1V$		250		μA
Shutdown Supply Current with Active Discharge Enabled	I _{SD_BK1}	Buck 1 disabled, Buck1ActDsc = 1		60		μA
Output Average Voltage Accuracy	ACC_BK1	I _{BK1OUT} = 10mA	-2.6		+2.6	%
Peak-to-Peak Ripple	V _{RPP_BK1}	Buck1ISet = 0100 (100mA), C _{BK10UT_EFF} = 2.2µF, I _{BK10UT} = 1mA		10		mV
Peak Current Set Range	IPSET_BK1	25mA step resolution. The accuracy of codes below 50mA is limited by t _{ON} _ MIN_BK1	0		375	mA
Load Regulation Error	V _{LOAD_REG_} BK1	Buck1ISet = 0110 (150mA), Buck1IAdptEn = 1, I _{BK1OUT} = 300mA		-3		%
Line Regulation Error	V _{LINE_REG_} BK1	V_{BK1OUT} = +1.2V, V_{SYS} from +2.7V to +5.5V		2		mV
Maximum Operative Output Current	I _{ВК1_МАХ_1111}	V _{SYS} = +3.7V, Buck1VSet = 010100 (+1.2V), Buck1ISet = 1111 (375mA), Buck1IAdptEn = 1, load regulation error = -5%	350			mA
BK1OUT Pulldown Current	I _{PD_BK1_E}	Buck 1 Enabled		100	200	nA
BK1OUT Pulldown Resistance with Buck Disabled	IPD_BK1_D	Buck 1 Disabled, V _{SYS} = +3.6V, Buck1VSet = 000000 (+0.7V)		7		MΩ
PMOS On Registeres	R _{P_ON_BK1}	Buck1FETScale = 0		0.35	0.49	
PMOS On-Resistance	R _{P_ON_BK1_FS}	Buck1FETScale = 1		0.7	0.98	Ω
NMOS On Besistance	R _{N_ON_BK1}	Buck1FETScale = 0		0.25	0.4	
NMOS On-Resistance	R _{N_ON_BK1_FS}	Buck1FETScale = 1		0.5	0.7	Ω
Freewheeling On- Resistance	R _{ON_BK1_} FRWHL	V _{SYS} = +3.7V, Buck1VSet = 010100 (+1.2V)		7	12	Ω

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum t _{ON}	t _{ON_MIN_BK1}			60	95	ns
Maximum Duty Cycle	D_MAX_BK1	Buck1IAdptEn = 1		95		%
Switching Frequency	FREQ_BK1	Load regulation error = -5%		3		MHz
Average Current During Short-Circuit to GND	ISHRT_BK1	Buck1ISet = 0110 (150mA), Buck1IAdptEn = 1, V _{BK1OUT} = 0V		100		mA
BK1LX Leakage Current	ILK_BK1LX	Buck 1 disabled			1	μA
Active Discharge Current	I _{ACTD_BK1}	V _{BK1OUT} = +1.2V	8	19	35	mA
Passive Discharge Resistance	R _{PSV_BK1}			10		kΩ
Full Turn-On Time	^t ON_BK1	Time from enable to full current capability		58		ms
Efficiency	EFFIC_BK1	Buck1VSet = 010100 (+1.2V), I _{BK1OUT} = 10mA, Buck1ISet = 0111 (175mA), Inductor: Murata DFE201610E-2R2M		88.5		%
BK1LX Rising/Falling	SLW_BK1	Buck1LowEMI = 0		2		V/ns
Slew Rate	SLW_BK1_L	Buck1LowEMI = 1		0.5		
Thermal Shutdown Threshold	T _{SHDN_BK1}			140		°C
BUCK2						
Input Voltage Range	V _{BK2IN}	Input voltage = V _{SYS}	2.7		5.5	V
Output Voltage Range	V _{BK2OUT}	50mV step resolution	0.7		3.85	V
Output Voltage UVLO	V _{UVLO_BK2}	Rising edge, typical hysteresis = 70mV			0.62	V
Quiescent Supply Current	I _{Q_BK2}	I _{BK2OUT} = 0mA, V _{SYS} = +3.7V, Buck2VSet = 001010 (+1.2V)		0.9	1.4	μA
Dropout Quiescent Supply Current	I _{Q_DO_BK2}	$I_{BK2OUT} = 0mA, V_{SYS} - V_{BK2OUT} \le +0.1V$		250		μA
Shutdown Supply Current with Active Discharge Enabled	ISD_BK2	Buck 2 disabled, Buck2ActDsc = 1		60		μA
Output Average Voltage Accuracy	ACC_BK2	I _{BK2OUT} = 10mA, Buck2VSet ≤ 110100 (+3.3V)	-2.6		+2.6	%
Peak-to-Peak Ripple	V _{RPP_BK2}	Buck2ISet = 0100 (100mA), C _{BK2OUT_EFF} = 2.2µF, I _{BK2OUT} = 1mA		10		mV
Peak Current Set Range	IPSET_BK2	25mA step resolution. The accuracy of codes below 50mA is limited by t _{ON} _ MIN_BK2	0		375	mA

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Load Regulation Error	VLOAD_REG_ BK2	Buck2ISet = 0110 (150mA), Buck2IAdptEn = 1, I _{BK2OUT} = 300mA		-3		%
Line Regulation Error	V _{LINE_REG_} BK2	V _{BK2OUT} = +1.2V, V _{SYS} from +2.7V to +5.5V		2		mV
Maximum Operative Output Current	I _{BK2_MAX_1111}	V _{SYS} = +3.7V, Buck2VSet = 001010 (+1.2V) Buck2ISet = 1111 (375mA), Buck2IAdptEn = 1, load regulation error = -5%	350			mA
BK2OUT Pulldown Current	IPD_BK2_E	Buck 2 enabled		200	400	nA
BK2OUT Pulldown Resistance with Buck Disabled	IPD_BK2_D	Buck 2 disabled, V _{SYS} = +3.6V, Buck2VSet = 000000 (+0.7V)		3.5		MΩ
DMOS On Desistance	R _{P_ON_BK2}	Buck2FETScale = 0		0.35	0.49	Ω
PMOS On-Resistance	R _{P_ON_BK2_FS}	Buck2FETScale = 1		0.7	0.98	
NMOS On Basistanas	R _{N_ON_BK2}	Buck2FETScale = 0		0.25	0.4	- Ω
NMOS On-Resistance	R _{N_ON_BK2_FS}	Buck2FETScale = 1		0.5	0.7	
Freewheeling On-Resistance	R _{ON_BK2_} FRWHL	V _{SYS} = +3.7V, Buck2VSet = 001010 (+1.2V)		7	12	Ω
Minimum t _{ON}	ton_min_bk2			60	95	ns
Maximum Duty Cycle	D_MAX_BK2	Buck2IAdptEn = 1		95		%
Switching Frequency	FREQ_BK2	Load regulation error = -5%		3		MHz
Average Current During Short-Circuit to GND	ISHRT_BK2	Buck2ISet = 0110 (150mA), Buck2IAdptEn = 1, V _{BK2OUT} = 0V		100		mA
BK2LX Leakage Current	I _{LK_BK2LX}	Buck 2 disabled			1	μA
Active Discharge Current	I _{ACTD_BK2}	V _{BK2OUT} = +1.2V	8	19	35	mA
Passive Discharge Resistance	R _{PSV_BK2}			10		kΩ
Full Turn-On Time	t _{ON_BUCK2}	Time from enable to full current capability		58		ms
Efficiency	EFFIC_BK2	Buck2VSet = 001010 (+1.2V), I _{BK2OUT} = 10mA, Buck2ISet = 0111 (175mA), Inductor: Murata DFE201610E-2R2M		88.5		%
BK2LX Rising/Falling	SLW_BK2	Buck2LowEMI = 0		2		V/ns
Slew Rate	SLW_BK2_L	Buck2LowEMI = 1		0.5		v/115
Thermal Shutdown Threshold	T _{SHDN_BK2}			140		°C

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
HVBOOST						
Input Voltage Range	V _{BSTIN}	Input voltage = V _{SYS}	2.7		5.5	V
Output Voltage Range	V _{BSTOUT}	250mV step resolution	5		20	V
Output Voltage UVLO	V _{BSTOUT} _ UVLO	V _{BSTOUT} - V _{SYS}	-2.7	-2.2	-1.6	V
Quiescent Supply Current		I _{BSTOUT} = 0mA, V _{SYS} = +3.7V, BstVSet = 000000 (+5V), T _A = 25°C		2.4	9	
Quescent Supply Current	I _{Q_BST}	I _{BSTOUT} = 0mA, V _{SYS} = +3.7V, BstVSet = 000000 (+5V)			106	μA
Output Average Voltage Accuracy	ACC_BST	I _{BSTOUT} = 1mA	-2		+2	%
Peak-to-Peak Ripple	V _{RPP_BST}	BstlSet = 1010 (350mA), BstVSet = 011100 (+12V), C _{BSTOUT_EFF} = 10µF, L = 4.7µH, I _{BSTOUT} = 1mA		5		mV
Peak Current Set Range	IPSET_BST	25mA step resolution	100		475	mA
DC Load Regulation Error	V _{LOAD_REG_} BST	BstVSet = 011100 (+12V), I _{BSTOUT} = 25mA, BstlSet = 1000 (300mA), BstlAdptEn = 1		0.3		%
DC Line Regulation Error	V _{LINE_REG_} BST	BstVSet = 000110 (+6.5V), V _{SYS} from +2.7V to +5.5V		4		mV
Maximum Operative Output Power	P _{MAX_BST}	BstlSet = 1000 (300mA), BstlAdptEn = 1	300	700		mW
BSTOUT Pulldown Resistance	R _{BSTOUT}	-3% Load Reg Error		10		MΩ
True Shutdown PMOS On-Resistance	R _{ON_TS}	I _{BSTOUT} = 100mA		0.15	0.22	Ω
Boost Freewheeling NMOS On-Resistance	R _{N_ONFRW_N}	I _{BSTOUT} = 100mA		0.45	0.7	Ω
Boost NMOS On-	R _{ONBST_N}	BstFETScale = 0, I _{BSTOUT} = 100mA		0.55	0.9	Ω
Resistance	R _{ONBST_NFS}	BstFETScale = 1, I _{BSTOUT} = 100mA		1.1	1.8	
Schottky Diode Forward Voltage	V _{BE_} SCHOTTKY	I _{BSTOUT} = 100mA, V _{BSTHVLX} - V _{BSTOUT}	0.2	0.4	0.6	V
Freewheeling On- Resistance	R _{ONBST_} FRWHL	I _{BSTOUT} = 100mA		50	80	Ω
Minimum t _{ON}	^t ON_BST_MIN			65		ns

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Max Switching Frequency	FREQ_BST_ MX	V _{BSTOUT} regulation error = -150mV. BstlSet = 100mA, BstlAdptEn = 0.	1.7	3.5	5.5	MHz
Max Peak Current Setting Extra Budget with BstIAdptEn = 1	$\Delta_{\text{IP}_{MAX}}$	BstlAdptEn = 1, V _{BSTOUT} regulation error = -200mV	150	250	450	mA
Short-Circuit Current Limit Difference vs. Peak Current Setting	Δ _{IBST_SHRT}	BstlAdptEn = 0	130	200	250	mA
BSTHVLX Leakage Current	ILK_BSTHVLX	Boost disabled			1	μA
BSTLVLX Leakage Current	ILK_BSTLVLX	Boost disabled			1	μA
Passive Discharge Resistance	R _{BSTPSV}			10		kΩ
Linear BSTOUT Precharge Current	IL_BSTOUT_ PRCH	$V_{\mbox{\scriptsize BSTOUT}}$ from 0 to $V_{\mbox{\scriptsize SYS}}$ – 0.4V	5	12.5	20	mA
Switching Precharge Inductor Current	ISW_BSTOUT_ PRCH	V _{BSTOUT} from V _{SYS} – 0.4V to final regulation voltage		13		mA
Full Turn-On Time	^t on_bst	Time from enable to full current capability		100		ms
	EFFIC_12	BstVSet = 011100 (+12V), I _{BSTOUT} = 20mA, BstISet = 1000 (300mA), Inductor: Murata DFE201610E-4R7M		85		
Efficiency	EFFIC_15	BstVSet = 101000 (+15V), I _{BSTOUT} = 2mA, BstISet = 1000 (300mA), Inductor: Murata DFE201610E-4R7M		83		%
	EFFIC_5	BstVSet = 000000 (+5V), I _{BSTOUT} = 10μA, BstISet = 0010 (150mA), Inductor: Murata DFE201610E-4R7M		76		7 %
	EFFIC_6P5	BstVSet = 000110 (+6.5V), I _{BSTOUT} = 10μA, BstISet = 0010 (150mA), Inductor: Murata DFE201610E-4R7M		73		
BHVLX Rising/Falling Slew Rate	SLW_BST HVLX			2		V/ns
Thermal Shutdown Threshold	T _{SHDN_BST}			125		°C

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BUCK-BOOST		· ·				•
Input Voltage Range	V _{BBIN}	Input voltage = V _{SYS}	2.7		5.5	V
Quiescent Supply Current	I _{Q_BB}	I _{BBOUT} = 0μΑ, V _{BBOUT} = +4V		1.3	2.1	μA
Maximum Output Operative Power	P _{MAX_BBOUT}	V _{SYS} > +3V	250			mW
Output Voltage Set Range	VBBOUT	100mV step	2.5		5	V
Average Output Voltage Accuracy	ACC_BBOUT	$I_{BBOUT} = 1mA, C_{BBOUT_EFF} \ge 10\mu F$	-3		3	%
Line Regulation Error	V _{LINE_REG_} BB	V _{SYS} = +2.7V to +5.5V, I _{BBOUT} = 10μA, BBstVSet = 001111 (+4V), BBstlSet = 0010 (100mA)	-1	+0.3	+1	%/V
Load Regulation Error	V _{LOAD} REG	BBstVSet = 001111 (+4V), I _{BBOUT} = 10μA to 50mA, BBstlSet = 0010 (100mA)		100		
	BB	BBstVSet = 001111 (+4V), I _{BBOUT} = 10μA to 100mA, BBstISet = 0010(100mA)		310		- mV/A
Line Transient	V _{LINE_TRAN_} BB	BBstVSet = 001111 (+4V), BBstlSet = 0010 (100mA), V _{SYS} from +2.7V to +5V, 0.2µs rise time		15		mV
	VLOAD	I _{BBOUT} = 0mA to 10mA, 200ns rise time, BBstVSet = 001111 (+4V), BBstISet = 0010 (100mA)		9		
Load Transient	TRAN_BB	I _{BBOUT} = 0mA to 100mA, 200ns rise time, V _{BBOUT} = 001111 (+4V), BBstlSet = 0010 (100mA)		31		- mV
Oscillator Frequency	f _{OSC_BB}		1.8	2	2.2	MHz
	R _{ON_PBK_BB}	High-side PMOS Buck FET		0.15	0.22	
	R _{ON_NBK_BB}	Low-side NMOS Buck FET		0.22	0.36	
Output FETs R _{ON}	R _{ON_PBST_BB}	High-side PMOS Boost FET (V _{BBOUT} = +4V)		0.21	0.31	Ω
	R _{ON_NBST_BB}	Low-side NMOS Boost FET		0.24	0.4	1
	Ron_frwh_bb	EMI improve FET between BBHVLX/ BBLVLX		8	11	
Passive Discharge Pulldown Resistance	R _{PDL_BB}	BBstPasDsc = 1		10		kΩ
Active Discharge Current	IACTDL_BB	BBstActDsc = 1, V _{BBOUT} = +1.5V	6	19	38	mA

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Turn-On Time	t _{ON_BB}	Time from enable to full current capability		100		ms	
UVLO On BBOUT	VBBOUT_UVLO		1.65	1.75	1.9	V	
Precharge Current	I _{PC_BB}	Precharge current. V_{SYS} = +2.7V, V_{BBOUT} = +1.65V	6	14	24	mA	
Pulse Mode Input Current Limit	IPLS_IN	BBstVSet = 001111 (+4V), V _{SYS} < V _{BBOUT} – 0.5V, f _{SW} = f _{OSC_BBST} /10, BBstISet = 0010 (100mA)		6.6		mA	
Pulse Mode Switching Period Ratio	T_RATIO	f _{OSC_BB} /f _{SW} 128 steps	10		138		
Average Current During Short-Circuit to GND	I _{SHRT_BB}	V _{BBOUT} = 0V	0.4	0.75	1.1	A	
Thermal Shutdown Threshold	T _{SHDN_BB}	T _J rising		150		°C	
Thermal Shutdown Hysteresis	T _{SHDN_} HYST_BB			10		°C	
LDO1 (Typical values are	at V _{L1IN} = +1.2V,	V _{L10UT} = +1V)					
Input Voltage Denge	Mana	LDO mode	1		2	V	
nput Voltage Range	V _{L1IN}	Switch mode	0.7		2		
		I _{L1OUT} = 0μA		1	2.1	μA	
Quiescent Supply Current	I _{Q_L1}	$I_{L1OUT} = 0\mu A$, Switch mode		0.35	0.7		
	·Q_L1	LDO enabled, I _{L1OUT} = 0µA, LDO1_MPC2CNT = 1, MPC2 high		0.7	1.35	P17 1	
Output Leakage	I _{LK_L10UT}	V _{L1OUT} = GND, LDO 1 disabled		0.015	2.5	μA	
Quiescent Supply Current in Dropout	IQ_L1_DRP	I _{L1OUT} = 0μA, V _{L1IN} = +1.2V, LDO1VSet = 0x1D (+1.225V)		2.4	4.2	μA	
Maximum Output Current	IL1OUT_MAX		50			mA	
Output Voltage	V _{L1OUT}	25mV step resolution	0.5		1.95	V	
Output Accuracy	ACC_LDO1	$(V_{L1OUT} + 0.2V) \le V_{L1IN} \le +2V,$ $I_{L1OUT} = 1mA$	-3.4		+3.9	%	
Dropout Voltage	V _{DRP_L1}	V _{L1IN} = +1V, LDO1VSet = 0x14 (+1V), I _{L1OUT} = 50mA			63	mV	
Line Regulation Error	V _{LINE_REG_L1}	$V_{L1IN} = (V_{L1OUT} + 0.2V)$ to +2V	-0.5		+0.5	%/V	
Load Regulation Error	V _{LOAD_REG_L1}	+1V \leq V _{L1IN} \leq +2V , I _{L1OUT} = 100µA to 50mA		0.003	0.013	%/mA	
line Transient	V _{LINE_TRAN_}	V _{L1IN} = +1V to +2V, 200ns rise time		±45			
Line Transient	L1	V_{L1IN} = +1V to +2V, 1µs rise time		±25		– mV	
_oad Transient	VLOAD_TRAN_	I _{L1OUT} = 0 to 10mA, 200ns rise time		80		mV	
LUGU HANSICIIL	L1	I _{L1OUT} = 0 to 50mA, 200ns rise time		130			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
Passive Discharge Resistance	R _{PDL_L1}			5	10	15	kΩ	
Active Discharge Current	IACTDL_L1			7	25	55	mA	
Switch Mode		Switch mode	V _{L1IN} = +1V, I _{L1OUT} = 50mA			1.02	- Ω	
On-Resistance	R _{ON_L1}		V _{L1IN} = +0.7V, I _{L1OUT} = 1mA			2.7		
Turn-On Time	town	I _{L1OUT} = 0mA, tim of LDO1VSet	e from 10% to 90%		0.38			
	^t ON_L1	I_{L1OUT} = 0mA, time from 10% to 90% of V _{L1IN} , Switch mode			0.065		– ms	
Chart Circuit Current		V _{L1IN} = +1.2V, V _{L1}	IOUT = 0V	165	310	405		
Short Circuit Current Limit	ISHRT_L1	V_{L1IN} = +1.2V, V_{L1} mode	IOUT = 0V, Switch	160	305	400	mA	
Thermal Shutdown Temperature	T _{SHDN_L1}	T _J rising			150		°C	
Thermal Shutdown Temperature Hysteresis	T _{SHDN} _ HYS_L1				20		°C	
Output Noise		10Hz to 100kHz, V _{L1IN} = +2V	V _{L1OUT} = +1.8V		120			
			V _{L10UT} = +1V		95		μV _{RMS}	
			V _{L1OUT} = +0.5V		70			
11/4 0	V _{L1IN_UVLO_F}	V _{L1IN} falling		0.53	0.77			
UVLO	V _{L1IN_UVLO_R}	V _{L1IN} rising			0.78	1	- V	
LDO2 (Typical values at V	_{L2IN} = +3.7V, V _{L2}	OUT = +3V)					•	
Innut Valtage Denge	N	LDO mode		1.71		5.5	V	
Input Voltage Range	V _{L2IN}	Switch mode		1.2		5.5		
Quiescent Supply Current	I _{Q_L2}	I _{L2OUT} = 0μΑ			1	1.7		
Quiescent Supply Current		I _{L2OUT} = 0μA, Swi	tch mode.		0.35	0.7	μA 7	
Quiescent Supply Current in Dropout	I _{Q_L2_DRP}	I _{L2OUT} = 0μA, V _{L2} = 0x15 (+3V)	IN = +2.9V, LDO2VSet		2.2	3.7	μA	
Maximum Output Current	IL2OUT_MAX	V _{L2IN} > +1.8V		100			mA	
Output Voltage	V _{L2OUT}	100mV step resolu	Ition	0.9		4	V	
Output Accuracy	ACC_LDO2	(V _{L2OUT} + 0.5V) ≤ I _{L2OUT} = 1mA	$V_{L2IN} \le +5.5V$,	-2.9		+2.9	%	
Dropout Voltage	V _{DRP_L2}	V _{L2IN} = +3V, LDO2 I _{L2OUT} = 100mA	2VSet = 0x16 (+3.1V),			100	mV	
		V _{L2IN} = +1.85V, LE (+1.9V), I _{L2OUT} =				130	mV	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	cc	NDITIONS	MIN	TYP	MAX	UNITS
Line Regulation Error	V _{LINE_REG_L2}	V _{L2IN} = (V _{L2OUT} + 0.5V) to +5.5V		-0.38		+0.38	%/V
Load Regulation Error	VLOAD_REG_ L2	+1.8V ≤ V _{L2IN} ≤ +5.5V I _{L2OUT} = 100μA to 100mA			0.002	0.005	%/mA
Line Trensient	VLINE_TRAN_	V_{L2IN} = +4V to +5V, 200ns rise time			±35		- mV
Line Transient	L2	V_{L2IN} = +4V to +	V_{L2IN} = +4V to +5V, 1µs rise time		±25	±25	
	VLOAD_TRAN_	I _{L2OUT} = 0mA to 10mA, 200ns rise time			100		
Load Transient	L2	I _{L2OUT} = 0mA to 100mA, 200ns rise time			200		- mV
Passive Discharge Resistance	R _{PDL_L2}			5	10	15	kΩ
Active Discharge Current	I _{ACTDL_L2}			8	22	40	mA
Switch Mode On-Resistance	R _{ON_L2}		V _{L2IN} = +2.7V, I _{L2OUT} = 100mA			0.7	Ω
		2 Switch mode	V _{L2IN} = +1.8V, I _{L2OUT} = 50mA			1	
			V _{L2IN} = +1.2V, I _{L2OUT} = 5mA			2.3	
Turn-On Time		I _{L2OUT} = 0mA, time from 10% to 90% of LDO2VSet			1.5		
rum-On nme	^t ON_L2	I _{L2OUT} = 0mA, ti of V _{L2IN} . Switch	ime from 10% to 90% mode		0.26		- ms
Chart Circuit Current		V _{L2IN} = +2.7V, V _{L2OUT} = 0V		225	360	555	1
Short Circuit Current Limit	I _{SHRT_L2}	V _{L2IN} = +2.7V, V Switch mode	′ _{L2OUT} = 0V,	210	350	540	mA
Thermal Shutdown Temperature	T _{SHDN_L2}	T _J rising			150		°C
Thermal Shutdown Temperature Hysteresis	T _{SHDN_HYS_L2}				20		°C
Output Noise		10Hz to 100kHz, V _{L2IN} = +5V	V _{L2OUT} = +3.3V		150		
			V _{L2OUT} = +2.5V		125		
			V _{L2OUT} = +1.2V		90		μV _{RMS}
			$V_{L2OUT} = +0.9V$		80		
UVLO		V _{L2IN} falling		1.05	1.35		v
	V _{L2IN_UVLO}	V _{L2IN} rising			1.36	1.69	v

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CHARGE PUMP						
Input Voltage	V _{CPIN}	Input voltage = V _{SYS}	2.7		5.5	V
Quiescent Supply Current	IQ_CP_5V	I _{CPOUT} = 0μA, CPVSet = 1 (+5V)		2	3.5	
	I _{Q_CP_6.6V}	I _{CPOUT} = 0µA, CPVSet = 0 (+6.6V)		2.2	4.3	- μΑ
CPOUT Output Voltage	V _{CPOUT}	CPVSet = 0, I _{CPOUT} = 10µA, V _{SYS} > +3.3V		6.6		V
		CPVSet = 1, I _{CPOUT} = 10µA		5		
Output Accuracy	ACC_CP	I _{CPOUT} < 120μΑ, V _{SYS} > +3.3V	-3		+3	%
Maximum Operative Output Current	ICPOUT_MAX	V _{SYS} > +3.3V, -5% load regulation error	250			μΑ
Efficiency	EFF_CP	CPVSet = 0 (+6.6V), I _{OUT} = 10µA, V _{SYS} = +3.7V		79		%
Max Charge Pump Frequency	FREQ_CP		90	100	110	kHz
Passive Discharge Resistance	R _{PSV_CP}			10		kΩ
HAPTIC DRIVER	l		1			
Input Voltage	V _{HD} IN	Input voltage = V _{SYS}	2.6		5.5	V
Quiescent Current	I _{HD_Q}	V _{DRP} /V _{DRN} = 0 to V _{SYS}		1300		μA
H-Bridge PWM Output Frequency	fhd_pwm_out		22.5	25	27.5	kHz
H-Bridge PWM Output Duty Cycle Resolution	D _{HD_PWM_} OUT	7 bits		V _{SYS} / 128		%V _{SYS}
LI Dridae Outruit		HptOffImp = 1		15		kΩ
H-Bridge Output Impedance in Off State	R _{HD_OFF}	HptOffImp = 0		R _{HD_ON_LS}		Ω
H-Bridge Output Leakage in High-Z State	IHD_LK_OUT	During back EMF detection, V _{DRP} /V _{DRN} = 0 to V _{SYS}	-1		+1	μΑ
H-Bridge On-Resistance	R _{HD_ON_HS}	High-side PMOS switch on, 300mA load	0.04	0.18	0.5	
	R _{HD_ON_LS}	Low-side NMOS switch on, 300mA load	0.04	0.18	0.5	- Ω
H-Bridge Overcurrent Protection Threshold	IHD_OC_THR	Rising current through high-side or low-side	600	1000	1500	mA
H-Bridge Overcurrent Protection Hysteresis	IHD_OC_HYS			130		mA

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
H-Bridge Thermal Shutdown Temperature Threshold	T _{HD_SHDN_} THR	Rising temperature		150		°C
H-Bridge Thermal Shutdown Temperature Hysteresis	T _{HD_SHDN_} HYS			25		°C
PWM Input Frequency	fHD_INPWM		10		250	kHz
LRA Resonance Frequency Tracking Range	fhd_lra	See Haptic Driver section	max of (200k/ IniGss [11:0], 100)		min of (800k/ IniGss [11:0], 500)	Hz
Startup Latency	thd_start	Time from command to vibration response. See <i>Haptic Driver</i> section		10	12	ms
LED CURRENT SINKS						
Maximum Input Voltage	VIN LED MAX				20	V
Quiescent Current	I _{Q_LED}	All LEDs on, V _{SYS} = 3.7V		245	370	μA
	LED_RNG	LEDIStep = 00 (0.6mA steps)	0.6		15	
Current Sink Setting Range		LEDIStep = 01 (1mA steps)	1		25	mA
range		LEDIStep = 10 (1.2mA steps)	1.2		30	
	ACC_LED	$I_{LED_}$ = 13mA, T _A = +25°C, V _{LED_} = +0.7V to +20V	-2		+2	%
		I _{LED} = 13mA, V _{LED} = +0.7V to +20V	-4		+4	
LED Current Accuracy		$I_{LED_{}=} 0.6mA \text{ to } 30mA, V_{LED_{}=} +0.7V \text{ to}$ +20V, T _A = 25°C	-5		+5	%
		I _{LED} = 0.6mA to 30mA, V _{LED} = +0.7V to +20V	-6		+6	%
LED Dropout Voltage		ILED_SET = $5mA$, I_{LED} = 0.9 x $5mA$		110	160	
	V _{LED_DROP}	$I_{LED_SET} = 25 \text{mA}, I_{LED_} = 0.9 \text{ x} 25 \text{mA}$		145	215	mV
		I _{LED_SET} = 30mA, I _{LED_} = 0.9 x 30mA		175	270	
Leakage in Shutdown	I _{LK_LED}	V _{LED} = +20V			0.1	μA
Open-LED Detection Threshold	V _{LED_DET}	LED_ enabled, LEDIStep = 00, falling edge	61	92	140	mV

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FUEL GAUGE		· · · · · · · · · · · · · · · · · · ·				·
Supply Voltage	V _{CELL}	(Note 3)	2.5		4.5	V
Fuel-Gauge SOC Reset		Configuration range, in 40mV steps	2.28		3.48	- V
(V _{RESET} Register)	V _{RST}	Trimmed at 3V	2.85	3.0	3.15	
		Sleep mode		0.5	2	
Summer Current		Hibernate mode, reset comparator disabled (V _{RESET} .Dis = 1)		3	5	
Supply Current		Hibernate mode, reset comparator enabled (V _{RESET} .Dis = 0)		4	6	- μΑ
	I _{DD1}	Active mode		23	40	
Time Base Accuracy	t _{ERR}	Active, hibernate modes (Note 4)	-3.5		+3.5	%
AD Sample Period		Active mode		250		ms
AB Gample I chou		Hibernate mode		45		s
Voltage Error	V _{ERR}	V _{CELL} = 3.6V, T _A = +25°C (Note 5)	-9		+6	mV/cell
Voltage Error	* EKK	$T_{A} = -20^{\circ}C \text{ to } +70^{\circ}C$	-23		+20	
Votlage-Measurement Resolution				1.25		mV/cell
BAT-to-Cell On-Resistance	R _{ON_ISO}	V _{BAT} = 3.7V		15	30	Ω
Bus Low-Detection Timeout	tSLEEP	(Notes 6, 7)		2.125		s
DIGITAL						·
SDA, SCL, MPC_, PFN_ Input Leakage Current	I _{LK_IO}	Input pullup/pulldown resistances disabled, input voltage from 0 to +5.5V	-1		+1	μΑ
SDA, SCL, MPC_ Input Logic-High	V _{IO_IH}		1.4			V
SDA, SCL, MPC_ Input Logic-Low	V _{IO_IL}				0.5	V
PFN_ Input Logic-High	V _{PFN_IH}	(Note 2)		0.7 x V _{CCINT}		V
PFN_ Input Logic-Low	V _{PFN_IL}	(Note 2)		0.3 x V _{CCINT}		V
MPC_, PFN_ Input Pullup Resistance	R _{IO_UP}	Pullup resistance to V _{CCINT} (Note 2)		170		kΩ
MPC_, PFN_ Input Pulldown Resistance	R _{IO_PD}			170		kΩ
MPC_ Output Logic-High	V _{IO_OH}	I _{OH} = 1mA, MPC_ configured as push- pull output, pullup voltage is V _{BK2OUT}	V _{BK2OU} T - 0.4			V

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Electrical Characteristics (continued)

(V_{BAT} = +3.7V, T_A = -20°C to +70°C, unless otherwise noted. Typical values are at T_A = +25°C. C_{SFOUT} = 1µF, C_{VDIG} = 1µF, C_{CAP} = 1µF, C_{SYS EFF} = 10µF, C_{BK10UT EFF} = 10µF, C_{BK20UT EFF} = 10µF, C_{L1IN} = 1µF, C_{L2IN} = 1µF, C_{L10UT} = 1µF, C_{L20UT} = 1µF, C_{CPP} = 27nF, C_{BSTOUT EFF} = 10µF, C_{BBOUT EFF} = 10µF, L_{BK1} = 2.2µH, L_{BK2} = 2.2µH, L_{BSTOUT} = 4.7µH, L_{BBOUT} = 4.7µH). (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SDA, RST , INT , MPC_, PFN_ Output Logic-Low	V _{IO_OL}	I _{OL} = 4mA			0.4	V
SDA, SCL Bus Low- Detection Current	I _{PD}	$V_{SDA} = V_{SCL} = +0.4V$		0.2	0.4	μA
SCL Clock Frequency	f _{SCL}		0		400	kHz
Bus Free Time Between a STOP and START Condition	^t BUF		1.3			μs
START Condition (repeated) Hold Time	^t HD_STA		0.6			μs
Low Period of SCL Clock	t _{LOW}		1.3			μs
High Period of SCL Clock	t _{HIGH}		0.6			μs
Setup Time for a Repeated START Condition	^t SU_STA		0.6			μs
Data Hold Time	^t HD_DAT		0		0.9	μs
Data Setup Time	^t SU_DAT		100			μs
Setup Time for a STOP Condition	^t su_sto		0.6			μs
Spike Pulse Widths Suppressed by Input Filter	t _{SP}		50			ns

Note 1: All devices are 100% production tested at $T_A = +25^{\circ}$ C. Limits over the operating temperature range are guaranteed by design.

Note 2: V_{CCINT} is an internal voltage supply generated from either V_{BAT} or V_{CAP}. The source is determined by the following: IF [(V_{CHGIN} > V_{CHGIN} DET AND V_{CAP} > V_{CAP} OK) OR V_{CAP} > (V_{BAT} + V_{THSWOVER})]

THEN V_{CCINT} = V_{CAP}

ELSE

 $V_{CCINT} = V_{BAT}$

Where V_{THSWOVER} = [0-300]mV Note 3: All voltages are referenced to GND.

Note 4: Test performed on unmounted/unsoldered parts.

Note 5: The voltage is trimmed and verified with16x averaging.

Note 6: Fuel Gauge enters shutdown mode after SCL < VIL and SDA < VIL for longer than t_{SLEEP}.

Note 7: Guaranteed by design.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Operating Characteristics

 $\begin{array}{l} V_{BAT}=+3.7V, \ C_{SFOUT}=1\mu\text{F}, \ C_{VDIG}=1\mu\text{F}, \ C_{CAP}=1\mu\text{F}, \ C_{SYS}=10\mu\text{F}, \ C_{BK1OUT_EFF}=15\mu\text{F}, \ C_{BK2OUT_EFF}=10\mu\text{F}, \ C_{L1IN}=22\mu\text{F}, \\ C_{L2IN}=22\mu\text{F}, \ C_{L1OUT_EFF}=15\mu\text{F}, \ C_{L2OUT_EFF}=10\mu\text{F}, \ C_{CPP}=27n\text{F}, \ C_{BSTOUT_EFF}=10\mu\text{F}, \ C_{BBOUT_EFF}=10\mu\text{F}, \ L_{BK1}=2.2\mu\text{H}, \\ L_{BK2}=2.2\mu\text{H}, \ L_{BSTOUT}=4.7\mu\text{H}, \ L_{BBOUT}=4.7\mu\text{H}, \ T_{A}=+25^{\circ}\text{C}, \ \text{unless otherwise noted}. \end{array}$

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Operating Characteristics (continued)

 $\begin{array}{l} \mathsf{V}_{\mathsf{BAT}} = +3.7\mathsf{V}, \ \mathsf{C}_{\mathsf{SFOUT}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{VDIG}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CAP}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{SYS}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK1OUT_EFF}} = 15\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1IN}} = 22\mu\mathsf{F}, \\ \mathsf{C}_{\mathsf{L2IN}} = 22\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1OUT_EFF}} = 15\mu\mathsf{F}, \ \ \mathsf{C}_{\mathsf{L2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CPP}} = 27n\mathsf{F}, \ \mathsf{C}_{\mathsf{BSTOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BBOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{L}_{\mathsf{BK1}} = 2.2\mu\mathsf{H}, \\ \mathsf{L}_{\mathsf{BK2}} = 2.2\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BSTOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BBOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{T}_{\mathsf{A}} = +25^\circ\mathsf{C}, \ \mathsf{unless} \ \mathsf{otherwise} \ \mathsf{noted}. \end{array}$

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Operating Characteristics (continued)

 $\begin{array}{l} \mathsf{V}_{\mathsf{BAT}} = +3.7\mathsf{V}, \ \mathsf{C}_{\mathsf{SFOUT}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{VDIG}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CAP}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{SYS}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK1OUT_EFF}} = 15\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1IN}} = 22\mu\mathsf{F}, \\ \mathsf{C}_{\mathsf{L2IN}} = 22\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1OUT_EFF}} = 15\mu\mathsf{F}, \ \ \mathsf{C}_{\mathsf{L2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CPP}} = 27n\mathsf{F}, \ \mathsf{C}_{\mathsf{BSTOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BBOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{L}_{\mathsf{BK1}} = 2.2\mu\mathsf{H}, \\ \mathsf{L}_{\mathsf{BK2}} = 2.2\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BSTOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BBOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{T}_{\mathsf{A}} = +25^\circ\mathsf{C}, \ \mathsf{unless} \ \mathsf{otherwise} \ \mathsf{noted}. \end{array}$

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Operating Characteristics (continued)

VBAT = +3.7V, CSFOUT = 1µF, CVDIG = 1µF, CCAP = 1µF, CSYS = 10µF, CBK1OUT EFF = 15µF, CBK2OUT EFF = 10µF, CL1IN = 22µF, $C_{L2IN} = 22\mu\text{F}, C_{L1OUT_EFF} = 15\mu\text{F}, C_{L2OUT_EFF} = 10\mu\text{F}, C_{CPP} = 27n\text{F}, C_{BSTOUT_EFF} = 10\mu\text{F}, C_{BBOUT_EFF} = 10\mu\text{F}, L_{BK1} = 2.2\mu\text{H}, L_{BK2} = 2.2\mu\text{H}, L_{BSTOUT} = 4.7\mu\text{H}, L_{BBOUT} = 4.7\mu\text{H}, T_A = +25^{\circ}\text{C}$, unless otherwise noted.

BOOST LOAD TRANSIENT

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Operating Characteristics (continued)

 $\begin{array}{l} \mathsf{V}_{\mathsf{BAT}} = +3.7\mathsf{V}, \ \mathsf{C}_{\mathsf{SFOUT}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{VDIG}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CAP}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{SYS}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK1OUT_EFF}} = 15\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1IN}} = 22\mu\mathsf{F}, \\ \mathsf{C}_{\mathsf{L2IN}} = 22\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1OUT_EFF}} = 15\mu\mathsf{F}, \ \ \mathsf{C}_{\mathsf{L2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CPP}} = 27n\mathsf{F}, \ \mathsf{C}_{\mathsf{BSTOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BBOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{L}_{\mathsf{BK1}} = 2.2\mu\mathsf{H}, \\ \mathsf{L}_{\mathsf{BK2}} = 2.2\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BSTOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BBOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{T}_{\mathsf{A}} = +25^\circ\mathsf{C}, \ \mathsf{unless} \ \mathsf{otherwise} \ \mathsf{noted}. \end{array}$

CHARGE PUMP EFFICIENCY vs. LOAD 5V SETTING

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Operating Characteristics (continued)

 $\begin{array}{l} \mathsf{V}_{\mathsf{BAT}} = +3.7\mathsf{V}, \ \mathsf{C}_{\mathsf{SFOUT}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{VDIG}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CAP}} = 1\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{SYS}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK1OUT_EFF}} = 15\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BK2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1IN}} = 22\mu\mathsf{F}, \\ \mathsf{C}_{\mathsf{L2IN}} = 22\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{L1OUT_EFF}} = 15\mu\mathsf{F}, \ \ \mathsf{C}_{\mathsf{L2OUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{CPP}} = 27n\mathsf{F}, \ \mathsf{C}_{\mathsf{BSTOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{C}_{\mathsf{BBOUT_EFF}} = 10\mu\mathsf{F}, \ \mathsf{L}_{\mathsf{BK1}} = 2.2\mu\mathsf{H}, \\ \mathsf{L}_{\mathsf{BK2}} = 2.2\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BSTOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{L}_{\mathsf{BBOUT}} = 4.7\mu\mathsf{H}, \ \mathsf{T}_{\mathsf{A}} = +25^\circ\mathsf{C}, \ \mathsf{unless otherwise noted}. \end{array}$

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

٦

Bump Configuration

BOIME	SIDE DOWN)	r	MAX20353	3		
1	1	2	3	4	5	6	7
A			(HDGND)	(SYS)		BK2GND	
В					CPOUT	(L2IN)	BK2OUT
С	(LED2)						(BBOUT)
D	(LED1)	(PFN1)		(VDIG)	CTG		(BBGND)
E		(PFN2)					BBHVLX
F	BSTOUT	SFOUT	(SET)			RST	BBLVLX
G	BSTGND						BK10UT
Н	BSTHVLX	B STLVLX	(BAT)	(SYS)	(CHGIN)	BK1GND	
			(3.71	WLP mm x 4.2	1mm)		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Bump Description

BUMP	NAME	FUNCTION
A1	DRN	ERM/LRA Haptic Driver Negative Output.
A2	DRP	ERM/LRA Haptic Driver Positive Output.
A3	HDGND	Haptic Driver Ground.
A4, H4	SYS	System Load Connection. Connect to the system load. Both SYS bumps should be connected on PCB through a low-impedance trace. Bypass common node with a minimum 10µF capacitor to GND.
A5	L2OUT	LDO Output. Bypass with 1µF capacitor to GND.
A6	BK2GND	Buck 2 Ground.
A7	BK2LX	Buck2 Regulator Switch. Connect through 2.2µH inductor to BK2OUT.
B1	SCL	I ² C Serial Clock Input.
B2	SDA	I ² C Serial Data Input/Open-Drain Output.
B3	CPP	Charge Pump Capacitor Positive Terminal. Connect 22nF (min), 33nF (max) capacitor to CPN.
B4	CPN	Charge Pump Capacitor Negative Terminal. Connect to 22nF (min), 33nF (max) capacitor to CPP.
B5	CPOUT	Charge Pump Output. Bypass with 1µF capacitor to GND.
B6	L2IN	LDO2 Input. Bypass with 1µF capacitor to GND.
B7	BK2OUT	Buck2 Regulator Output. Bypass with 10µF capacitor to GND.
C1	LED2	Current Sink Output 2.
C2	DGND	Digital Ground.
C3	MPC4	Multipurpose Control I/O 4.
C4	MPC1	Multipurpose Control I/O 1.
C5	MPC0	Multipurpose Control I/O 0.
C6	CELL	Fuel Gauge Voltage. Bypass with 0.1µF capacitor to GND.
C7	BBOUT	Buck-Boost Regulator Output. Bypass with 10µF capacitor to GND.
D1	LED1	Current Sink Output 1.
D2	PFN1	Configurable Power Mode Control Pin (e.g., KIN).
D3	GSUB	Substrate Connection. Connect to Ground.
D4	VDIG	Internal Reference Supply. Bypass with 1µF capacitor to GND.
D5	CTG	Fuel Gauge. Connect to GND.
D6	QSTRT	Fuel Gauge Quick Start Input.
D7	BBGND	Buck-Boost Ground.
E1	LED0	Current Sink Output 0.
E2	PFN2	Configurable Power Mode Control Pin (e.g., KOUT).
E3	MON	Monitor Multiplexer Output.
E4	CAP	Internal Reference Supply. Bypass with 1µF capacitor to GND.
E5	AGND	Analog Ground.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Bump Description (continued)

BUMP	NAME	FUNCTION
E6	ALRT	Fuel Gauge Alert Output.
E7	BBHVLX	Buck-Boost Regulator Switch HV side. Connect through a 3.3µH or 4.7µH inductor to BBLVLX.
F1	BSTOUT	Boost Regulator Output. Bypass with 10µF capacitor to GND.
F2	SFOUT	Safe Out LDO. Bypass with 1uF capacitor to GND.
F3	SET	External Resistor For Battery Charge Current Level Setting. Do not connect any capacitance on this pin; maximum allowed capacitance ($C_{SET} < 5\mu s/R_{SET}$)pF.
F4	TPU	Battery Temperature Thermistor Measurement Pullup (Internally Connected To V _{DIG} During Battery Temperature Thermistor Measurement). Do not exceed 1mA load on TPU.
F5	THM	Battery Temperature Thermistor Measurement Connection.
F6	RST	Reset Output. Active-Low, Open-Drain Output.
F7	BBLVLX	Buck-Boost Regulator Switch LV Side. Connect through a 3.3µH or 4.7µH inductor to BBHVLX.
G1	BSTGND	High-Voltage Boost Ground.
G2	INT	Interrupt Open-Drain Output.
G3	MPC3	Multipurpose Control I/O 3.
G4	MPC2	Multipurpose Control I/O 2.
G5	L1OUT	LDO1 Output. Bypass with 1µF capacitor to GND.
G6	L1IN	LDO1 Input. Bypass with 1µF capacitor to GND.
G7	BK1OUT	Buck1 Regulator Output. Bypass with 10µF capacitor to GND.
H1	BSTHVLX	Boost Regulator Switch. Connect through a 4.7µH inductor to BSTLVLX.
H2	BSTLVLX	Boost Regulator Switch. Connect through a 4.7µH inductor to BSTHVLX.
H3	BAT	Battery Connection. Connect to positive battery terminal. Bypass with a minimum 1µF capacitor to GND.
H5	CHGIN	+28V/-5.5V Protected Charger Input. Bypass with 1µF capacitor to GND.
H6	BK1GND	Buck 1 Ground.
H7	BK1LX	Buck1 Regulator Switch. Connect through a 2.2µH inductor to BK1OUT.

Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these requirements under typical operating conditions taking into consideration the effects of voltage and temperature.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Typical Application Diagram

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Detailed Description

Power Regulation

The MAX20353 features two high-efficiency, low quiescent current buck regulators, a buck-boost regulator, a high-voltage boost regulator, a charge pump, and two low quiescent current, low-dropout (LDO) linear regulators that are configurable as load switches. Additionally, a safe-output LDO is available when there is a valid voltage present at CHGIN. This SFOUT regulator's output is configurable to 3.3V or 5V. Excellent light-load efficiency allows the switching regulators to run continuously without significant energy cost. The buck and boost regulators can operate in a fixed peak current mode for low-current applications, as well as an adaptive peak current mode to improve load regulation, extend the high-efficiency range, and minimize capacitor size when more current is required.

Dynamic Voltage Scaling (DVS)

The buck and LDO regulators feature the ability to change their output voltages through the AP interface without restarting. This function is called DVS. Additionally, Buck1 features the ability to quickly change its output voltage using a combination of MPC inputs and direct I²C registers. When this DVS mode is enabled, MPC0 and MPC1 select the Buck1 output voltage from a set of values defined in registers 0x23–0x25 and by opcode 0x35 (see <u>Table 1</u>). This bypasses the process of writing Buck1VSet though the AP interface and allows faster control of the Buck1 voltage. The Buck1 DVS function is enabled using the Buck1DVSEn bit (register 0x1F[0]).

Power Switch and Reset Control

The MAX20353 features a power switch that provides the ability to execute a reset sequence or to turn off the main system power and enter Off mode to extend battery life.

Shutdown and reset events are triggered by an external control through the power function (PFN) control inputs, I²C commands, or if other conditions are met. The behavior of the PFN pins is preconfigured to support one of the multiple types of wearable application cases. <u>Table 2</u> describes the behavior of the PFN1 and PFN2 pins based on the PwrRstCfg[3:0] bits, while Figure 1a thru Figure 1d

shows basic flow diagrams associated with each mode. Both PFN pins have a 10ms debounce period to distinguish valid inputs followed by a PwrRstCfg dependent timing to execute the PFN function.

A soft reset sends a 10ms pulse on \overrightarrow{RST} and will either leave register settings unchanged or reset them to their default values depending on the device version (see <u>Table 201</u> for device settings). A hard reset on any device initiates a complete Power-On Reset sequence.

The device enters Off mode on cold boot (initial battery attach, $V_{CHGIN} = 0V$) in response to a power-off I²C command, a valid PFN signal based on the PwrRstCfg[3:0] setting, or in the case of a UVLO condition on SYS. When the device is in Off mode, the BAT-SYS connection is opened and all functions are disabled except for the power function controller and LDO2 (if configured as always-on).

The MAX20353 will exit Off mode and turn the main power back on when there is a gualified PFN1 signal (PwrRstCfg[3:0] = 0000, 0001, 0110, 0111, 1000) or when a valid voltage is applied to CHGIN. In the powered-on state, the SYS node is enabled and other functions can be controlled through the I²C registers. When the poweron event occurs, the BAT-to-CELL switch is immediately closed and, 30ms later, the power path to SYS is enabled. This delay allows the fuel gauge to take an open cell measurement before the battery is loaded. Note that there is a relearning period to determine the state of the battery whenever the fuel gauge is disconnected. If the typical use case frequently switches the fuel gauge off and on, the user may consider permanently connecting CELL-to-BAT to avoid the relearning period. Figure 2 illustrates a complete boot sequence coming out of the Off state.

Table 1. Buck1 DVS MPC Values

MPC1	MPC0	Buck1 Voltage
0	0	Buck1VSet[5:0]
0	1	Buck1DVSVSet1[5:0]
1	0	Buck1DVSVSet2[5:0]
1	1	Buck1DVSVSet3[5:0]

Figure 1a. PwrRstCfg = 0000 or 0001

Figure 1b. PwrRstCfg = 0010 or 0011

Figure 1c. PwrRstCfg = 0100 or 0101

Figure 1d. PwrRstCfg = 0110

Figure 1e. PwrRstCfg = 0111

Figure 1f. PwrRstCfg = 1000

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 2. PwrRstCfg Settings

PwrRstCfg	PFN1	PFN1 PU/PD*	PFN2	PFN2 PU/PD*	Notes
0000	Enable	Pulldown	Soft-Reset Active-Low	Pullup	On/Off mode with 10ms debounce. Active- high On/Off control on PFN1. Logic-low on PFN2 generates 10ms pulse on RST. Note: In this mode, if PFN1 is high, PWR_ OFF_CMD will cause the part to turn off, then immediately return to the ON state.
0001	Disable	Pullup	Soft-Reset Active-Low	Pullup	On/Off mode with 10ms debounce. Active- low On/Off control on PFN1. Logic-low on PFN2 generates 10ms pulse on RST. Note: In this mode, if PFN1 is high, PWR_ OFF_CMD will cause the part to turn off, then immediately return to the ON state.
0010	Hard-Reset Active-High	Pulldown	Soft-Reset Active-High	Pulldown	Always-On mode (i.e., device can only be put in Off state through PWR_OFF_CMD). 10ms hard reset off time. 10ms soft reset pulse time. 200ms delay prior to both reset behaviors.
0011	Hard-Reset Active-Low	Pullup	Soft-Reset Active-Low	Pullup	Always-On mode (i.e., device can only be put in Off state through PWR_OFF_CMD). 50ms Hard-Reset off time. 10ms Soft-Reset pulse time. 200ms delay prior to both reset behaviors.
0100	Hard-Reset Active-High Triggered on CHGIN Insertion	Pulldown	Soft-Reset Active-High Trig- gered on CHGIN Insertion	Pulldown	Always-On mode (i.e., device can only be put in Off state through PWR_OFF_CMD). 50ms Hard-Reset off time. 10ms Soft-Reset pulse time. 15s delay prior to both reset behaviors. Either reset may be aborted
0101	Hard-Reset Active-Low Triggered by CHGIN Insertion	Pullup	Soft-Reset Active-Low Trig- gered on CHGIN Insertion	Pullup	Always-On mode (i.e., device can only be put in Off state through PWR_OFF_CMD). 70ms Hard-Reset off time. 10ms Soft-Reset pulse time. 15s delay prior to both reset behaviors. Either reset may be aborted.
0110	KIN	Pullup	KOUT	None	Off mode through specific long-press (12s) or PWR_OFF_CMD. On mode through specific short-press (400ms).
0111	KIN	Pullup	KOUT	None	Off mode through PWR_OFF_CMD. On mode through specific long-press (3s) or CHGIN insertion soft reset through specific long press (10s).
1000	KIN	Pullup	Soft-Reset Active-Low 12s Long Press	Pullup	Custom Two Button. Off mode through PWR_OFF_CMD. On mode through KIN long-press (3s) or CHGIN insertion. Soft reset through PFN2 long press (12s).
1001-1111		R	FU		

*Note: The presence of internal pullup/pulldown resistors on PFN1 and PFN2 is device specific. Refer to <u>Table 202</u> to determine if a device has internal resistors or requires external resistors.

Figure 2. The full MAX20353 Boot Sequence

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Power Sequencing

The sequencing of the switching regulators, LDOs, and charge pump during power-on is configurable. See each regulator's sequencing bits for details. Regulators can turn on at one of three points during the power-on process: 75ms after the power-on event, at the time the RST signal is released, or at two points in between. The two points between SYS and RST are fixed proportionally to the duration of the Power-On Reset (POR) process (t_{RST}). The timing relationship is presented graphically in Figure 3.

Alternatively, the regulators can remain off by default and turn on with an I²C command after $\overline{\text{RST}}$ is released.

LDO2 can be configured to be always-on as long as SYS or BAT is present.

The SYS voltage is monitored during the power-on sequence. If V_{SYS} falls below V_{SYS_UVLO_F} during the sequencing process with a valid voltage at CHGIN, the process repeats from the point where SYS was enabled to allow more time for the voltage to stabilize. If there is not a valid voltage at CHGIN, the device returns to the OFF state to avoid draining the battery. Power is also turned off if BAT experiences a current greater than IBAT OC R for more than t_{BAT OC D}.

Figure 3. Reset Sequence Programming

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Current Sink

In addition to several voltage regulators, the MAX20353 also includes three low-dropout linear current regulators from LED to GND. The sink current of each current regulator is independently programmable through its respective LED ISet[4:0] bits in direct registers LED Direct (0x2D–0x2F). The current regulators can be programmed to sink 0.6mA to 30mA with configurable step sizes and are ideal for sinking current from external LEDs. The LEDIStep[1:0] bits in direct register LEDStepDirect (0x2C) control the size of the current steps for all current sinks. This step size also sets an effective limit on the sinking current as the number of steps remains constant while the step size varies. Current sinks are enabled through an I²C command, by an internal charger status signal, or by an external MPC pin allowing for LED status indicators. Note that the current sinks always draw quiescent current when tied to an MPC control or status signal regardless of the MPC_ or status state.

System Load Switch

An internal $80m\Omega$ (typ) MOSFET connects BAT to SYS when no voltage source is available on CHGIN. When an external source is detected at CHGIN, this switch opens and SYS is powered from the input source through the input current limiter. The SYS-to-BAT switch also prevents V_{SYS} from falling below V_{BAT} when the system load exceeds the input current limit. If V_{SYS} drops to V_{BAT} due to the current limit, the BAT-SYS switch turns on so the load is supported by the battery. If the system load continuously exceeds the input current limit, the battery is not charged. This is useful for handling loads that are nominally below the input current limit but have high current peaks exceeding the input current limit. During these peaks, battery energy is used, but at all other times the battery charges.

Smart Power Selector

The smart power selector seamlessly distributes power from the external CHGIN input to the BAT and SYS nodes. With both an external adapter and battery connected, the smart power selector basic functions are:

- When the system load requirements are less than the input current limit, the battery is charged with residual power from the input.
- When the system load requirements exceed the input current limit, the battery supplies supplemental current to the load.
- When the battery is connected and there is no external power input, the system is powered from the battery.

Input Limiter

The input limiter distributes power from the external adapter to the system load and battery charger. In addition to the input limiter's primary function of passing power to the system load and charger, it performs several additional functions to optimize use of available power.

Invalid CHGIN Voltage Protection: If CHGIN is above the overvoltage threshold, the device enters overvoltage lockout (OVL). OVL protects the MAX20353 and downstream circuitry from high-voltage stress up to +28V and down to -5.5V. During positive OVL, the internal circuit remains powered and an interrupt is sent to the host. The negative voltage protection disconnects CHGIN and the device is powered only by BAT. The charger turns off and the system load switch closes, allowing the battery to power SYS. CHGIN is also invalid if it is less than V_{BAT}, or less than the USB undervoltage threshold. With an invalid input voltage, the BAT-SYS load switch closes and allows the battery to power SYS.

CHGIN Input Current Limit: The CHGIN input current is limited to prevent input overload. The input current limit is controlled by I^2C . To accommodate systems with a high in-rush current, the limiter includes a programmable blanking time during which the input current limit increases to $I_{LIM MAX}$.

Thermal Limiting: In case the die temperature exceeds the normal limit (T_{CHG LIM}), the MAX20353 attempts to limit temperature increase by reducing the input current from CHGIN. In this condition, the system load has priority over the charger current, so the input current is first reduced by lowering the charge current. If the junction temperature continues to rise and reaches the maximum operating limit (T_{CHGIN SHDN}), no input current is drawn from CHGIN and the battery powers the entire system load. Adaptive Battery Charging: While the system is powered from CHGIN, the charger draws power from SYS to charge the battery. If the total load exceeds the input current limit, an adaptive charger control loop reduces charge current to prevent V_{SYS} from collapsing. When the charge current is reduced below 50% due to ILIM or T_{CHG LIM} limits, the timer clock operates at half speed. When the charge current is reduced below 20% due to $I_{\mbox{LIM}}$ or $T_{\mbox{CHG}}$ $_{\mbox{LIM}}$ limits, the timer clock is paused.

Fast-Charge Current Setting: The MAX20353 uses an external resistor connected from SET to GND to set the fast-charge current. The precharge and charge-termination currents are programmed as a percentage of this value by opcode 0x14. The fast-charge current resistor can be calculated as:

 $R_{SET} = K_{SET} \times V_{SET}/I_{FChg}$

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

where K_{SET} has a typical value of 2000A/A and V_{SET} has a typical value of +1V. The range of acceptable resistors for R_{SET} is $4k\Omega$ to $400k\Omega$.

A capacitive load on SET can cause instability of the charger if the condition ($C_{SET} < 5\mu s/R_{SET}$) pF is violated.

SAR ADC/Monitor MUX

In order to simplify system monitoring, the MAX20353 includes a voltage monitor multiplexer (MUX). The I²C controlled MUX connects the MON pin to the scaled value of one of six voltage regulators, BAT, or SYS. A resistive divider scales the voltage to one of four ratios determined by MONRatioCfg[1:0] (opcode 0x50, <u>Table 124</u>). Because the MUX can only tolerate voltages up to +5.5V, V_{CHGIN}, V_{CPOUT}, and V_{BSTOUT} are not available to MON.

An internal ADC reads the remaining voltage rails and performs system tasks such as JEITA temperature monitoring and SYS tracking during haptic driver operations. Manual ADC measurements are initiated by writing the desired channel to ADC_Measure_Launch (opcode 0x53, <u>Table 128</u>) and reading the response from APDataIn0-3. The ADC can also measure the MON voltage when the MUX is enabled with a 1:1 ratio. The full-scale range of the ADC for different voltage rails is detailed in <u>Table 3</u>.

JEITA Monitoring with Charger Control

To enhance safety when charging Li+ batteries, the MAX20353 includes JEITA-compliant temperature monitoring. A resistive divider is formed on THM by attaching a pullup resistor to TPU and connecting the thermistor of a battery-pack (do not exceed 1mA load on TPU). The divider output is read by the internal ADC when JEITA monitoring is enabled and the resulting temperature measurement places the battery into one of five temperature zones: cold, cool, room, warm, and hot. Zone-specific temperature limits and charging behavior are

Figure 4a. Sample JEITA Pre Charge Profile

Table 3. SAR ADC Full-Scale Voltages andConversions

VOLTAGE RAIL	AVAILABLE RANGE	CONVERSION (V)
SYS	+2.6V to +5.5V	(Result[7:0] * 5.5)/255
MON	0V to +5.5V	(Result[7:0] * 5.5)/255
тнм	0% to 100% V _{DIG}	(Result[7:0] * 100)/255
CHGIN	+3V to +8V	(Result[7:0] * 8.25)/255
CPOUT	+3V to +8V	(Result[7:0] * 8.25)/255
BSTOUT	+3V to +21V	(Result[7:0] * 21.0)/255

fully configurable through the ChargerThermalLimits_Config_ Write (opcode 0x16, <u>Table 76</u>) and ChargerThermalReg_ Config_Write (opcode 0x18, <u>Table 80</u>) commands detailed in <u>Table 76</u> and <u>Table 80</u>. Some example profiles are included in <u>Figure 4</u>. It is important to note that, because battery temperature is measured by the internal ADC, JEITA monitoring is unavailable when automatic level compensation is enabled in the haptic driver.

Haptic Driver

Note: The haptic driver registers must be updated to to the recommended default values shown in <u>Table 199</u> and <u>Table 200</u>. Failure to overwrite the default values after a POR results in poor haptic driver performance.

The MAX20353 features a versatile, integrated haptic driver. The driver allows for real time control of haptic devices through PWM or I^2C as well as the ability to run haptic patterns from internal RAM. For added flexibility, the driver is capable of driving both Linear Resonant Actuator (LRA) and Eccentric Rotating Mass (ERM) actuators.

Figure 4b. Sample JEITA Fast Charge Profile

Figure 4c. Sample JEITA Maintain Charge Profile

Figure 5. Charger State Diagram

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

ERM

An ERM is the simplest haptic actuator to drive. The driving signal is taken directly as the output of an integrated H-bridge, allowing for bidirectional operation of the actuator. To configure the MAX20353 to drive an ERM, the HptSel bit must be set to 0 using the opcode 0xA0 or 0xAD (Table 134 or Table 160).

LRA

Unlike the on-off control of an ERM, LRAs require a sinusoidal driving signal. The MAX20353 realizes this with a Class-D amplifier that converts the driver input to a sinusoidal output.

An LRA's vibration magnitude is maximized when the driving signal matches the LRA's resonant frequency. To ensure the haptic driver closely tracks this frequency, the MAX20353 includes an auto-resonance tracking feature that measures the back-electromotive force (BEMF) of the LRA and modulates the drive frequency to minimize the phase error between the BEMF and the driving signal. The resonant tracking feature should remain enabled any time an LRA is driven. Resonance tracking is enabled by setting the EmfEn bit to 1 with opcode 0xA0 or 0xAD. The range of resonant frequencies that are tracked is clamped by the driver to be no lower than max(200k/IniGss[11:0], 100)Hz and no greater than min(800k/IniGss[11:0], 500) Hz. See description of IniGss[11:0] in Table 134 for calculation of frequency. This mitigates the risk of audible noise during a fault event.

To select LRA mode, set the HptSel bit to 1 using opcode 0xA0 or 0xAD.

LRA Braking

The haptic driver features enhanced BEMF tracking and automatic braking to efficiently stop or reverse the direction of an LRA. Each time the driving polarity is reversed, the BEMF measurement configurations are overridden by the values in BrkLpGain[1:0] (opcode 0xB0), BrkCyc[4:0] (opcode 0xB1), and BrkWdw[4:0] (opcode 0xB9) for BrkCyc[4:0] number of half cycles. This allows the haptic driver to optimize the redetection of the BEMF after the sudden change in direction.

Additionally, the haptic driver can automatically detect the optimal braking time when running patterns in the RAMHP and ETRG modes. When the RAM pattern reaches a brake sample (nLSx[1:0] = 00 and RPTx[3:0] = 0000), or when the ETRG pattern reaches the brake amplitude, the haptic driver measures the LRA's BEMF amplitude. The BEMF amplitude measurements are taken at either two or four sample points along the sine wave depending on AutoBrkPeakMeas setting in register 0x26. If the absolute value of the BEMF is lower than the threshold

AutoBrkMeasTh[1:0] (register 0x27) for more than half of the duration of AutoBrkMeasWdw[3:0] (register 0x27) over a number of consecutive sample points (set by AutoBrkMeasEnd[1:0], register 0x27), then the driver determines that the BEMF is sufficiently small and driving stops. Recommended braking settings are provided in Table 199 and Table 200.

Driver Amplitude

The haptic driver features a configurable voltage basis for the amplitude of the driving signal. Setting this basis, referred to as the full-scale voltage (V_{FS}), configures the maximum amplitude of the driver output. It is set using HptVfs[7:0] with opcode 0xA2 or 0xB2 (<u>Table 138</u> or <u>Table 170</u>) and has a range of 0V to 5.5V (LSB = 21.57mV). Since the H-bridge is supplied by V_{SYS}, the actual fullscale voltage of the driver at any given moment is the minimum of the value stored in HptVfs[7:0] and V_{SYS}.

Once V_{FS} has been set, all driver amplitudes are scaled as a percentage of the full-scale voltage. The resolution of the amplitude is always V_{SYS}/128. Therefore, the effective resolution of the amplitude scales with the V_{FS}/ V_{SYS} ratio. For example, if V_{FS} = V_{SYS}/2, the effective resolution is 6 bits.

Automatic Level Compensation

Because V_{SYS} can vary over time, the driver must adjust its output duty cycle to maintain a constant reference to the full-scale voltage. An Automatic Level Compensation (ALC) function measures V_{SYS} and handles this adjustment. ALC can be enabled by setting the AlcMod bit to 1 using opcode 0xA0 or 0xAD and uses the MAX20353's internal ADC to monitor V_{SYS}. The ALC function then scales the haptic driver's duty cycle as needed to maintain the programmed driver amplitude. If ALC is not enabled, V_{SYS} is assumed to be V_{FS}.

Haptic UVLO

Additionally, V_{SYS} is measured after the driver is enabled but prior to starting a vibration. At any moment, if V_{SYS} goes below the programmed UVLO value, which is set through HptSysUVLO[7:0] with opcode 0xA6 (Table 146), the vibration event is aborted and the haptic driver is locked. See the <u>Haptic Driver Lock</u> section for details regarding restarting vibration if a haptic UVLO condition is reached.

The time required to perform the V_{SYS} measurement, as well as other startup delays, results in an initial latency of the haptic driver. To avoid partial pattern skipping in real-time modes, vibration patterns should be provided at least t_{HD_START} after enabling the desired real-time vibration mode (PPWM or RTI²C).

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Vibration Timeout

A vibration timeout parameter is programmable through I²C. If a vibration lasts longer than the programmed timeout period, the vibration is aborted. The timeout period is stored in HptDrvTmo[5:0] (LSB = 1s), which can be written using opcode 0xB7 (Table 180). Writing code "000000" disables the timeout function. See the <u>Haptic</u> <u>Driver Lock</u> section for details regarding restarting vibration if a timeout is reached.

Overcurrent/Thermal Protection

The haptic driver also includes overcurrent and thermal shutdown protection. While the haptic driver is active, the MAX20353 monitors the current from DRP and DRN. If overcurrent protection is enabled (HptOCProtDis = 0) and the DRP or DRN current exceeds $I_{HD_OC_THR}$, the haptic driver issues a fault, aborts vibration, and enters the locked state.

Thermal protection allows the MAX20353 to immediately shut down the haptic driver should the die temperature exceed $T_{HD_OC_THR}$. This feature is enabled by setting HptThmProtDis = 0.

See the <u>Haptic Driver Lock</u> section for details regarding restarting vibration if an overcurrent or overtemperature condition is reached.

Haptic Driver Lock

If the MAX20353 detects a fault in the haptic driver, vibrations in progress are aborted and the haptic driver is locked by the HptLock bit. The user must manually clear the HptLock bit using opcode 0xA8 (Table 150) in order to run a new vibration attempt. A fault occurs under any of the following conditions: V_{SYS} drops below the threshold programmed in HptSysUVLO[7:0] (SystemError 0x25), an overcurrent is detected on DRN or DRP (SystemError = 0x20, 0x21, 0x22, or 0x23), the die temperature exceeds the thermal protection threshold (SystemError = 0x24), or a vibration duration exceeds the timeout period stored in HptDrvTmo[5:0] (SystemError 0x04). Writing any value other than 0x00 with opcode 0xA8 will set HptLock high and disable the driver output.

Interface Modes

There are a total of four interface modes for controlling the haptic driver. These include two real-time modes and two stored memory modes. The haptic driver mode is set through HptDrvMode[4:0] with the direct-access I²C register 0x31. Selecting an operation mode also enables the driver. In addition, HptDrvEn must be set and kept to 1 before setting HptDrvMode[4:0] and for the whole duration of vibration. Once vibration finishes, HptDrvMode[4:0] must be set to "00000" before the haptic driver may be disabled via HptDrvEn = 0 for power savings.

Pure-PWM (PPWM)

PPWM mode offers real-time control of the haptic driver. Patterns are generated by applying a PWM signal to the MPC_pin selected by HptDrvMode[4:0]. The duty cycle of the applied signal determines the amplitude of the driving signal, scaled by V_{FS}. The driving direction is centered about a 50% duty cycle. A duty cycle of 0% to 47.5% produces a (100 to 0)%V_{FS} amplitude in the negative direction and a duty cycle of 52.5% to 100% produces a (0 to 100)%V_{FS} amplitude in the positive direction. The region between 47.5% and 52.5% duty cycle is a dead zone and inputs within this range correspond to a null output.

A timeout feature prevents idle PWM inputs from causing unwanted vibrations of the haptic motor. If the input signal remains at 0% duty cycle or 100% duty cycle for more than 2.56ms, the output is null and vibration stops. As such, the MPC_ input must remain dynamic to produce a continuous output.

Real-Time I²C (RTI²C)

Similar to PPWM mode, RTI²C mode offers real-time control of the haptic driver. The direct register HptRTI2CAmp (0x32) determines the amplitude of the output signal. The lower seven bits of the register (HptRTI2CAmp[6:0]) set the amplitude as a percentage of V_{FS} and the MSB (HptRTI2CSign) sets the direction of rotation. 100% amplitude, reverse drive, for example, is produced by setting HptRTI2CAmp to 0x7F (0b0111111).

Once RTI²C mode is enabled through HptDrvMode[4:0], the haptic driver continuously outputs the amplitude and direction defined by the latest data in HptRTI2CAmp. In order to generate haptic patterns, the HptRTI2CAmp register must receive new data.

External Triggered Stored Pattern (ETRG)

In ETRG mode, a rising edge on an MPC_ pin or a 0-to-1 transition of the HptExtTrig bit in direct I²C register 0x31 initiates a vibration sequence. The sequence is contained in six registers and comprises an overdrive (startup) amplitude, active drive amplitude, braking amplitude, and the duration of each driving behavior.

Amplitudes contained in ETRGOdAmp[7:0], ETRGActAmp[7:0], and ETRGBrkAmp[7:0], which are set through opcode 0xA2-0xA4 or 0xB3 (<u>Table 138</u> thru <u>Table 143</u> and <u>Table 172</u>), follow the same format as HptRTI2CSign + HptRTI2CAmp[6:0] in direct I²C register 0x32 (i.e., the lower-seven bits store the amplitude as a percentage of V_{FS} and the MSB determines the direction).

The trigger input is selected when the driver enters ETRG mode via HptDrvMode[4:0] in direct I²C register 0x31. In order to properly register the rising edge, the trigger signal must remain high for a few clock cycles of the driver.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Once the sequence begins, the haptic driver follows the duration values stored in ETRGOdDur[7:0], ETRGActDur[7:0], and ETRGBrkDur[7:0]. It is possible, however, to extend the active drive time by leaving the trigger high longer than the time specified in ETRGActDur[7:0]. Doing so will cause the driver to output the amplitude stored in ETRGActAmp[7:0] until a falling edge is detected. Once the trigger signal falls low, the brake sequence executes.

RAM Stored Haptic Pattern (RAMHP)

The final method of controlling the haptic driver is RAMHP mode. The MAX20353 contains an internal 256 x 24 bit RAM in which haptic patterns are stored. By storing haptic sequences in RAM at startup, the driver can perform sophisticated haptic sequences upon receipt of a trigger signal as in ETRG mode. The direct I²C register HptPatRAMAddr (0x33) specifies the RAM address where the sequence begins.

RAM should be loaded when the MAX20353 comes out of Off mode. To write data to the RAM, the HptRAMEn bit in direct register HptDirect1 (0x31) must first be set high. Next, writing a value to the direct register HptRAMAddr (0x28) specifies the RAM address in which data written to HptDataH, HptDataM, and HptDataL (0x29, 0x2A, and 0x2B, respectively) is stored. It is possible to read back data from RAM. Writing an address to HptRAMAddr, then initiating an I²C read transaction of register 0x29, will allow readback of the three bytes stored in the RAM address. RAM read and write procedures are depicted graphically in Figure 6.

A haptic pattern is composed of multiple pattern samples. Pattern samples define the amplitude, duration, wait time, transition, and repetition of a segment of a haptic pattern. These samples are defined in three bytes and written to RAM through HptDataH, HptDataM, and HptDataL. HptDataH contains the sign of the sample's amplitude (AxSign), the upper-five bits of the amplitude (Ax[6:2]), and instructions to the haptic driver on handling the pattern sample (nLSx). HptDataM contains the lower two bits of the sample's amplitude (Ax[1:0]), the duration of the sample (Dx), and the upper bit of the wait time before the next sample in the pattern (Wx[4]). HptDataL contains the lower four bits of the wait time (Wx[3:0]) and the repetition behavior (RPTx). Table 4 describes the definition of a pattern sample and Figure 7 provides a sample haptic pattern with corresponding waveform.

3	SLAVE ADDRESS-W	А	HptRAMAddr (0x28)	А	RAI	M ADDRESS[7:0]	А	RAMDataH[7:0]	А	RAMDataM[7:0]	А	RAMDataL[7:0]	А	Ρ	
	Į														
EAI	DING RAM DATA BYTES	S FRC	M RAM ADDRESS[7:0]												
S	SLAVE ADDRESS-W	А	HptRAMAddr (0x28)	A	RAN	M ADDRESS[7:0]	А								
	[_				_		
S	SLAVE ADDRESS-W	А	HptDataH (0x29)	А	Sr	SLAVE ADDRES	S-R	A RAMDataH[7:0]	A RAMDataM[7:	0]	A RAMDataL[7:0	0]	NA	F
_															
	FROM MAS	TER T	O SLAVE												
	FROM MAS														
		'E TO	MASTER												
	FROM SLAV	'E TO IDITIC	MASTER												
5	FROM SLAV	'E TO IDITIC STAR	MASTER IN T												
	FROM SLAV S START CON C REPEATED	YE TO IDITIC STAR DTION	MASTER IN T												

Figure 6. Read and Write Processes for RAM

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 4. RAMHP Pattern Storage Format

ADDRESS	RESS 0x28-0x2B											
BIT	B7	B6	B5	B4	B3	B2	B1	B0				
HptRAMAddr				HptRA	MAddr[7:0]							
HptDataH	nL	_Sx[1:0]	AmpSign			Amp[6:2]						
HptDataM	Ai	mp[1:0]			Dur[4:0]			Wait[4]				
HptDataL		V	/ait[3:0]			RPT	x[3:0]					
HptRAMAddr [7:0]	The RAM	address in whi	ch the pattern sa	imple is stored								
nLSx[1:0]	00 = Curre 01 = Curre 10 = Inter	ent sample is tl ent sample is n polate current s	Imple in the patte ne last sample in ot the last sampl sample with next ne last sample in	the pattern e in the patterr sample		pattern RPTx[3:0] times					
AmpSign[1:0]	Sign of ha 0 = Positiv 1 = Negat	/e	in current sample	9								
Amp[6:2]	Sets the a Table 138		ttern sample x as	a 7-bit percer	itage of V _{FS} an	d a 1-bit directi	on. See HptVfs	[7:0] in				
Dur[4:0]	Sets the d 00000 = 0 00001 = 5	ms	the driver output	ts the amplitud	e of the current	sample in incre	ements of 5ms					
	11110 = 15 11111 = 15											
Wait[4:0]	Sets the d 00000 = 0 00001 = 5	ms	the driver waits a	at zero amplitu	de before the n	ext sample in ir	ncrements of 5	ms				
	11110 = 19 11111 = 19											
RPTx[3:0]	this sets the operation of the sets the operation of the	he number of ti epeat 0 times. I	s to repeat the sa mes to repeat the f nLSx = 00, auto	e whole patterr	ı.	-	-					
		epeat 14 times epeat 15 times										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Figure 7a. Sample Pattern Stored in RAM

Figure 7b. Haptic Driver Output of Stored Pattern

Fuel Gauge

ModelGauge Theory of Operation

The MAX20353 fuel gauge is based on the MAX17048 stand-alone fuel gauge and simulates the internal, nonlinear dynamics of a Li+ battery to determine its State of Charge (SOC). The sophisticated battery model considers impedance and the slow rate of chemical reactions in the battery. ModelGauge performs best with a custom model, obtained by characterizing the battery at multiple discharge currents and temperatures to precisely model it. At power-on reset (POR), the ICs have a preloaded ROM model that performs well for some batteries. For more details on the fuel gauge, refer to the MAX17048 data sheet.

Fuel-Gauge Performance

In coulomb counter-based fuel gauges, SOC drifts because offset error in the current-sense ADC measurement accumulates over time. Instantaneous error can be very

small, but never precisely zero. Error accumulates over time in such systems (typically, 0.5%–2% per day) and requires periodic corrections. Some algorithms correct drift using occasional events and, until such an event occurs, the algorithm's error is boundless:

- Reaching predefined SOC levels near full or empty
- Measuring the relaxed battery voltage after a long period of inactivity
- Completing a full charge/discharge cycle

ModelGauge requires no correction events because it uses only voltage, which is stable over time. The ModelGauge remains accurate despite the absence of any of the above events; it neither drifts nor accumulates error over time.

To correctly measure performance of a fuel gauge as experienced by end-users, exercise the battery dynamically. Accuracy cannot be fully determined from only simple cycles.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Battery Voltage and State of Charge

Open-circuit voltage (OCV) of a Li+ battery uniquely determines its SOC; one SOC can have only one value of OCV. In contrast, a given V_{CELL} can occur at many different values of OCV because V_{CELL} is a function of time, OCV, load, temperature, age, impedance, etc.; one value of OCV can have many values of V_{CELL} . Therefore, one SOC can have many values of V_{CELL} , so V_{CELL} cannot uniquely determine SOC.

Even the use of sophisticated tables to consider both voltage and load results in significant error due to the load transients typically experienced in a system. During charging or discharging, and for approximately 30 min after, V_{CELL} and OCV differ substantially, and V_{CELL} has been affected by the preceding hours of battery activity. ModelGauge uses voltage comprehensively.

Temperature Compensation

For best performance, the host microcontroller must measure battery temperature periodically, and compensate the RCOMP ModelGauge parameter accordingly, at least once per minute. Each custom model defines constants RCOMP0 (0x97, default), TempCoUp (-0.5, default), and TempCoDown (-5.0, default). To calculate the new value of CONFIG.RCOMP:

// T is battery temperature (degrees Celsius)

if (T > 20) {

RCOMP = RCOMP0 + (T - 20) x TempCoUp;

}

else {

}

RCOMP = RCOMP0 + (T - 20) x TempCoDown;

Impact of Empty-Voltage Selection

Most applications have a minimum operating voltage below which the system immediately powers off (empty voltage). When characterizing the battery to create a custom model, choose empty voltage carefully. Capacity unavailable to the system increases at an accelerating rate as empty voltage increases.

To ensure a controlled shutdown, consider including operating margin into the fuel gauge based on some low threshold of SOC, for example shutting down at 3% or 5%. This utilizes the battery more effectively than adding error margin to empty voltage.

Battery Insertion

When the battery is first inserted into the system, the fuel-gauge IC has no previous knowledge about the battery's SOC. Assuming that the battery is relaxed, the IC translates its first V_{CELL} measurement into the best initial estimate

of SOC. Initial error caused by the battery not being in a relaxed state diminishes over time, regardless of loading following this initial conversion. While SOC estimated by a coulomb counter diverges, ModelGauge SOC converges, correcting error automatically. Initial error has no long-lasting impact.

Battery Insertion Debounce

Any time the IC powers on or resets (see the <u>VRESET/</u> <u>ID Register (0x18)</u> section), it estimates that OCV is the maximum of 16 V_{CELL} samples (1ms each, full 12-bit resolution). OCV is ready 17ms after battery insertion, and SOC is ready 175ms after that.

Battery Swap Detection

If V_{CELL} falls below V_{RST}, the IC quick-starts once V_{CELL} returns above V_{RST}. This handles battery swap; the SOC of the previous battery does not affect that of the new one. See the <u>Quick-Start</u> and <u>VRESET/ID Register (0x18)</u> sections.

Quick-Start

If the IC generates an erroneous initial SOC, the battery insertion and system power-up voltage waveforms must be examined to determine if a quick-start is necessary, as well as the best time to execute the command. The IC samples the maximum VCELL during the first 17ms. See the <u>Battery Insertion Debounce</u> section. Unless V_{CELL} is fully relaxed, even the best sampled voltage can appear greater or less than OCV. Therefore, quick-start must be used cautiously.

Most systems should not use quick-start because the ICs handle most startup problems transparently, such as intermittent battery-terminal connection during insertion. If battery voltage stabilizes faster than 17ms, do not use quick-start.

The quick-start command restarts fuel-gauge calculations in the same manner as initial power-up of the IC. If the system power-up sequence is so noisy that the initial estimate of SOC has unacceptable error, the system microcontroller may be able to reduce the error by using quick-start. A quick-start is initiated by a rising edge on the QSTRT pin, or by writing 1 to the quick-start bit in the MODE register.

Power-On Reset (POR)

POR includes a quick-start, so only use it when the battery is fully relaxed. See the <u>Quick-Start</u> section. This command restores all registers to their default values. After this command, reload the custom model. See the *CMD Register (0xFE)* section.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Hibernate Mode

The ICs have a low-power hibernate mode that can accurately fuel gauge the battery when the charge/discharge rate is low. By default, the device automatically enters and exits hibernate mode according to the charge/discharge rate, which minimizes quiescent current (below 5μ A) without compromising fuel-gauge accuracy. The ICs can be forced into hibernate or active modes. Force the IC into hibernate mode to reduce power consumption in applications with less than C/4-rate maximum loading. For applications with higher loading, Maxim recommends the default configuration of automatic control of hibernate mode.

In hibernate mode, the device reduces its ADC conversion period and SOC update to once per 45s. See the <u>HIBRT Register (0x0A)</u> section for details on how the IC automatically enters and exits hibernate mode.

Alert Interrupt

The ICs can interrupt a system microcontroller with five configurable alerts. All alerts can be disabled or enabled with software. When the interrupt occurs, the system microcontroller can determine the cause from the STATUS register.

When an alert is triggered, the IC drives the \overline{ALRT} pin logic-low and sets CONFIG.ALRT = 1. The \overline{ALRT} pin remains logic-low until the system software writes CONFIG.ALRT = 0 to clear the alert. The alert function is enabled by default, so any alert can occur immediately upon power-up. Entering sleep mode clears no alerts.

Sleep Mode

In sleep mode, the IC halts all operations, reducing current consumption to below 1 μ A. After exiting sleep mode, the IC continues normal operation. In sleep mode, the IC does not detect self-discharge. If the battery changes state while the IC sleeps, the IC cannot detect it, causing SOC error. Wake up the IC before charging or discharging. To enter sleep mode, write MODE.EnSleep = 1 and either:

Hold SDA and SCL logic-low for a period for $t_{\mbox{SLEEP}}.$ A rising edge on SDA or SCL wakes up the IC.

Write CONFIG.SLEEP = 1. To wake up the IC, write CONFIG.SLEEP = 0. Other communication does not wake up the IC. POR does wake up the IC.

Therefore, applications that can tolerate $4\mu A$ should use hibernate mode rather than Sleep mode.

I²C Interface

The MAX20353 uses the two-wire I^2C interface to communicate with a host microcontroller. The configuration settings and status information provided through this interface are detailed in the register descriptions. To simplify the use of existing code and drivers designed for interfacing with the ModelGauge fuel gauge, the MAX20353 appears as two devices on an I^2C bus. The main device controlling the regulators, charger, and other system functions has the seven-bit slave address 0b0101000 (0x50 for writes, 0x51 for reads). Accessing the fuel gauge is done using the seven-bit slave address 0b0110110 (0x6C for writes, 0x6D for reads).

Applications Information

I²C Interface

The MAX20353 contains an I²C-compatible interface for data communication with a host controller (SCL and SDA). The interface supports a clock frequency of up to 400kHz. SCL and SDA require pullup resistors that are connected to a positive supply.

Start, Stop, And Repeated Start Conditions

When writing to the MAX20353 using I²C, the master sends a START condition (S) followed by the MAX20353 I²C address. After the address, the master sends the register address of the register that is to be programmed. The master then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I²C slave. See Figure 8.

Figure 8. I²C START, STOP and REPEATED START Conditions

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Slave Address

Set the Read/Write bit high to configure the MAX20353 to read mode. Set the Read/Write bit low to configure the MAX20353 to write mode. The address is the first byte of information sent to the MAX20353 after the START condition.

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the <u>Start, Stop, And Repeated Start Conditions</u> section). Both SDA and SCL remain high when the bus is not active.

Single-Byte Write

In this operation, the master sends an address and two data bytes to the slave device (Figure 9). The following procedure describes the single byte write operation:

The master sends a START condition

The master sends the 7-bit slave address plus a write bit (low)

The addressed slave asserts an ACK on the data line

The master sends the 8-bit register address

The slave asserts an ACK on the data line only if the address is valid (NAK if not)

The master sends 8 data bits

The slave asserts an ACK on the data line

The master generates a STOP condition

Burst Write

In this operation, the master sends an address and multiple data bytes to the slave device (Figure 10). The slave device automatically increments the register address after each data byte is sent, unless the register being accessed is 0x00, in which case the register address remains the same. The following procedure describes the burst write operation:

The master sends a START condition

The master sends the 7-bit slave address plus a write bit (low)

The addressed slave asserts an ACK on the data line

The master sends the 8-bit register address

The slave asserts an ACK on the data line only if the address is valid (NAK if not)

The master sends 8 data bits

The slave asserts an ACK on the data line

Repeat 6 and 7 N-1 times

The master generates a STOP condition

Figure 9. Write Byte Sequence

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Single Byte Read

In this operation, the master sends an address plus two data bytes and receives one data byte from the slave device (Figure 11). The following procedure describes the single byte read operation:

The master sends a START condition

The master sends the 7-bit slave address plus a write bit (low)

The addressed slave asserts an ACK on the data line

The master sends the 8-bit register address

The slave asserts an ACK on the data line only if the address is valid (NAK if not)

The master sends a REPEATED START condition

The master sends the 7-bit slave address plus a read bit (high)

The addressed slave asserts an ACK on the data line The slave sends 8 data bits

The master asserts a NACK on the data line

The master generates a STOP condition

Figure 10. Burst Write Sequence

Figure 11. Read Byte Sequence

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Burst Read

In this operation, the master sends an address plus two data bytes and receives multiple data bytes from the slave device (Figure 12). The following procedure describes the burst byte read operation:

The master sends a START condition

The master sends the 7-bit slave address plus a write bit (low)

The addressed slave asserts an ACK on the data line

The master sends the 8-bit register address

The slave asserts an ACK on the data line only if the address is valid (NAK if not)

The master sends a REPEATED START condition

The master sends the 7-bit slave address plus a read bit (high)

The slave asserts an ACK on the data line

The slave sends 8 data bits

The master asserts an ACK on the data line

Repeat 9 and 10 N-2 times

The slave sends the last 8 data bits

The master asserts a NACK on the data line

The master generates a STOP condition

Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the master and the MAX20353 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (see Figure 13). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows for detection of unsuccessful data transfers.

Figure 12. Burst Read Sequence

Figure 13. Acknowledge

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Application Processor Interface

Several of the MAX20353's functions are controlled by an Application Processor (AP). AP commands read and write configuration settings to the internal registers. Data transfer is handled by the AP controller and is triggered by writes to APCmdOut. There is a 5ms (typ), 9ms (max) latency associated with setting commands. This delay increases if the command requires additional processes such as ADC measurements, haptic autotune, etc. When the transfer is complete, INT goes low, APCmdResponseInt (bit seven of direct register Int2 (0x05)) is set, and the controller writes the value of the received opcode to APResponse. Reading the data in APResponse provides verification of the successful execution of an opcode.

AP Write

To set configuration registers, data must first be written to the APDataOut0-5 registers. <u>Tables 54 to 197</u> detail the functions of each APDataOut_ register for a given opcode. Once APDataOut0-5 contain the configuration bytes, writing an opcode to APCmdOut signals the controller to transfer data to the internal registers. Note that a write opcode only transfers the number of bytes defined by the command. The controller ignores the contents of all extra APDataOut_ registers. See <u>Figure 14</u> for the structure of an AP write procedure with an APResponse opcode check.

Figure 14. Executing a Write Opcode and Reading the MAX20353 Response

AP Read

To read a configuration register, APCmdOut is set to a read opcode. Read opcodes signal the controller to transfer the internal register contents to the APDataIn0-5 registers. When the transfer is complete, APDataIn0-5 contain the stored configuration settings or operation results and can be read over I²C. Because read opcodes expect no inputs, any data stored in APDataOut0-5 is ignored. Figure 15 illustrates the AP read processes.

AP Launch

Certain commands trigger additional functions in the MAX20353. These commands, such as ADC_Measure_Launch (opcode 0x53) and HPT_Autotune (opcode 0xAC), can require additional elaboration time for taking measurements and computing the result. When the process is complete, results may be read from APDataIn0-5 as in normal AP Read commands.

Write-Protected Commands and Fields

If the factory configured bit WriteProtect is enabled, the AP commands InputCurrent_Config_Write (0x10), Charger_Config_Write (0x14), and Charger_ControlWrite (0x1A) are not accessible. If the application processor issues a request to one of these commands, the device will respond with the SysError code MA_SYSERROR_ APCMD_WRITEPROTECT.

A settings are also write protected, but it is possible to write these settings using an additional field in the command that contains a password.

Figure 15. Executing a Read Opcode and Reading the MAX20353 Response

AX2	03	53												PN	110	Cw	vitł	۱L	Jltr	a-	Lo	W	lq	Re	egi	ula	nto	rs,	С	ha	rg
BO			ChgTmoInt	ThmLD01Int	ChgSysLimInt		ChgTmo	ThmLD01	ChgSysLim		ChgTmoIntM	ThmLDO1IntM	ChgSysLimIntM					F	uε	I C	6a	ug	e,	ar	id Sr	Ha na	apt II L	ic i+	Buck1D		MPCOV
B1			ThmRegInt	ThmLD02Int	SysBatLimInt	ChgStat[2:0]	ChgJEITAReg	ThmLDO2	SysBatLim		ChgJEITA RealntM	ThmLDO2IntM	SysBatLimIntM	•																LD02DirEn	MPC1Write
B2	-		ChgThmSdInt	UVLOLD01Int	BBstThmInt	•	ChgJEITASD	UVLOLD01	BBstThm		ChgJEITA SDIntM	UVLOLDO1IntM	BBstThmIntM	-																	MPC2Write
B3	HardwareID[7:0]	FirmwareID[7:0]	UsbOkInt	UVLOLDO2Int	LRAActInt		UsbOk	UVLOLDO2	LRAAct	SystemError[7:0]	UsbOkIntM	UVLOLDO2IntM	LRAActIntM	APDataOut0[7:0]	APDataOut1[7:0]	APDataOut2[7:0]	APDataOut3[7:0]	APDataOut4[7:0]	APDataOut5[7:0]	APDataOut6[7:0]	APCmdOut[7:0]	APResponse[7:0]	APDataIn0[7:0]	APDataIn1[7:0]	APDataIn2[7:0]	APDataIn3[7:0]	APDataIn4[7:0]	APDataIn5[7:0]	1	1	MPC3Write
B4	Hardwa	Firmwa	UsbOVPInt	ThmBuck1Int	LRALockInt	ThmStat[2:0]	UsbOVP	ThmBuck1	LRALock	System	UsbOVPIntM	ThmBuck1IntM	LRALockIntM	APData	APCm	APRes	APDat	APDat	APDat	APDat	APDat	APDat			MPC4Write						
B5			lLimInt	ThmBuck2Int			ILim	ThmBuck2			lLimIntM	ThmBuck2IntM																		1	
B6			ChgStatInt	BstFltInt	SysErrInt	1	I	BstFlt	SysErr		ChgStatIntM	BstFltIntM	SysErrIntM																1	1	
B7			ThmStatInt	ThmSDInt	APCmdRespInt	I	1	ThmSD	ApCmdResp		ThmStatIntM	ThmSdIntM	ApCmdRespIntM																		
R/W	ĸ	ĸ	COR	COR	COR	ĸ	۲	ĸ	۲	ĸ	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	RW	ĸ	Ж	۲	ĸ	ĸ	ĸ	ĸ	RW	RW	RW
REGISTER NAME	HardwareID	FirmwarelD	Int0	Int1	Int2	Status0	Status1	Status2	Status3	SystemError	IntMask0	IntMask1	IntMask2	APDataOut0	APDataOut1	APDataOut2	APDataOut3	APDataOut4	APDataOut5	APDataOut6	APCmdOut	APResponse	APDataIn0	APDataIn1	APDataIn2	APDataln3	APDataIn4	APDataIn5	Buck112CDVS	LDODirect	MPCDirectWrite
REGISTER ADDRESS	00X0	0x01	0x03	0x04	0x05	0x06	0×07	0x08	60×0	0x0B	0×0C	0×0D	OXOE	0x0F	0x10	0x11	0x12	0x13	0x14	0x15	0x17	0x18	0x19	0x1A	0x1B	0x1C	0x1D	0x1E	0x1F	0x20	0x21

MA	X2	03	53	1										Ρ	MI	С	wi	th		tra-Low Iq Regulators, Charger,
	BO	MPC0Read				AutoBrkDis	AutoBrkMeasEnd[1:0]			Wait[4]		LEDIStep[1:0]				HptOCProtDis			Fu	el Gauge, and Haptic Driver for Small Li+ Systems
	B1	MPC1Read				AutoBrkFltrSat Stop	AutoBrkMe				[0:	PC2CNF				HptThmProtDis				
	B2	MPC2Read	VSet1[5:0]	VSet2[5:0]	VSet3[5:0]	AutoBrkPeak Meas	asTh[1:0]		Amp[6:2]		Rpt[3:0]	LD01_MPC2CNF	LED0ISet[4:0]	LED1ISet[4:0]	LED2ISet[4:0]	HptOfflmp	HptDrvMode[4:0]	0		
	B3	MPC3Read	Buck1DVSVSet1[5:0]	Buck1DVSVSet2[5:0]	Buck1DVSVSet3[5:0]	I	AutoBrkMeasTh[1:0]	HptRAMAdd[7:0]		Dur[4:0]		LD01_MPC2CNT						HptRTI2CAmp [6:0]	HptPatRAMAddr[7:0]	
	B4	MPC4Read				I		HptRAN				1				1			HptPatRA	
	B5	1				I	sWdw[3:0]		AmpSign		3:0]	LED00pen				1	HptDrvEn			
continued)	B6	I				I	AutoBrkMeasWdw[3.0]		1:0]	1:0]	Wait[3:0]	LED1Open	LED0En[2:0]	LED1En[2:0]	LED2En[2:0]		HptRamEn			
Register Map (co	B7	1				I			nLSx[1:0]	Amp[1:0]		LED2Open					HptExtTrig	HptRTI2CSign		
Regi	R/W	ĸ	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
I ² C	REGISTER NAME	MPCDirectRead	DVSVIt1	DVSVIt2	DVSVIt3	ActBrkCfg0	ActBrkCfg1	HptRAMAddr	HptRAMDataH	HptRAMDataM	HptRAMDataL	LEDStepDirect	LED0Direct	LED1Direct	LED2Direct	HptDirect0	HptDirect1	HptRTI2CAmp	HptPatRAMAddr	
Direct Access	REGISTER ADDRESS	0x22 1	0x23	0x24	0x25	0x26	0x27	0x28	0x29	0x2A	0x2B	0x2C	0x2D	0x2E	0x2F	0X30	0x31	0x32	0X33 I	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Direct Access I²C Register Descriptions Table 5. HardwareID Register (0x00)

ADDRESS:	0x00							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME	HardwareID[7:	0]						
HardwareID [7:0]	HardwareID[7:	0] bits show in	formation abo	ut the hardwar	e revision of th	e MAX20353		

Table 6. FirmwareID Register (0x01)

ADDRESS:	0x01							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME	FirmwareID[7:0]						
FirmwareID [7:0]	FirmwareID[7:0] bits show inf	ormation abou	t the firmware	revision of the	MAX20353		

Interrupt Registers Table 7. Int0 Register (0x03)

ADDRESS:	0x03										
MODE:	Clear On Read										
BIT	7 6 5 4 3 2 1 0										
NAME	ThmStatInt	ChgStatInt	lLimInt	UsbOVPInt	UsbOkInt	ChgThmS DInt	ThmRegInt	ChgTmoInt			
ThmStatInt	Change in ThmStat caused interrupt.										
ChgStatInt	Change in ChgStat caused interrupt, or first detection complete after POR.										
ILimInt	Input current limit caused interrupt.										
UsbOVPInt	Change in USBOVP caused interrupt.										
UsbOkInt	Change in USBOk caused interrupt. Note: Registers written using opcodes 0x10, 0x14, 0x16, 0x18, 0x1A, and 0x1C are reset on charger insertion. After receiving a UsbOk interrupt, wait 10ms before writing any data using these opcodes. Failure to wait 10ms may result in the data being overwritten to the default.										
ChgThmSDInt	Change in ChgThmSD caused interrupt.										
ThmRegInt	Change in Cl	Change in ChgThmReg caused interrupt.									
ChgTmoInt	Change in ChgTmoInt caused interrupt.										

Table 8. Int1 Register (0x04)

ADDRESS:	0x04									
MODE:	Clear On Read									
BIT	7 6 5 4 3 2 1 0									
NAME	ThmSDInt	BstFltInt	ThmBuck 2Int	ThmBuck 1Int	UVLOLDO 2Int	UVLOLDO 1Int	ThmLDO 2Int	ThmLDO 1Int		
ThmSDInt	Change in ThmSD caused interrupt.									
BstFltInt	Change in BstFlt caused interrupt.									
ThmBuck2Int	Change in Th	Change in ThmBuck2 caused interrupt								
ThmBuck1Int	Change in ThmBuck1 caused interrupt.									
UVLOLDO2Int	Change in U	Change in UVLOLDO2 caused interrupt.								
UVLOLDO1Int	Change in UVLOLDO1 caused interrupt.									
ThmLDO2Int	Change in ThmLDO2 caused interrupt.									
ThmLDO1Int	Change in ThmLDO1 caused interrupt.									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 9. Int2 Register (0x05)

ADDRESS:	0x05										
MODE:	Clear On Read										
BIT	7 6 5 4 3 2 1 0										
NAME	APCmdRes pInt	SysErrInt	—	LRALockInt	LRAActInt	BBstThmInt	SysBatLimInt	ChgSysLi mInt			
APCmdRespInt	AP Command Response Interrupt 0 = No new data available in APDataIn registers. 1 = New data available in APDataIn registers.										
SysErrInt	System Error Interrupt 0 = No new error 1 = New Asynchronous System Error										
LRALockInt		LRA Lock Interrupt Change in LRALock caused interrupt.									
LRAActInt	Change in LR	Change in LRAAct caused interrupt.									
BBstThmInt	Change in BBstThm caused interrupt.										
SysBatLimInt	Change in SysBatLim caused interrupt.										
ChgSysLimInt	Change in Ch	Change in ChgSysLim caused interrupt.									

Status Registers

Table 10. Status0 Register (0x06)

ADDRESS:	0x06										
MODE:	Read Only										
BIT	7 6 5 4 3 2 1 0										
NAME	—										
ThmStat[2:0]	Status of Thermistor Monitoring 000 = T < T1 001 = T1 < T < T2 010 = T2 < T < T3 011 = T3 < T < T4 100 = T > T4 101 = No thermistor detected/THM high due to external pull-up 110 = NTC input disabled via ThmEn 111 = Automatic monitoring disabled because CHGIN is not present. THM can still be measured by ADC_ Measure_Launch							ADC_			
ChgStat[2:0]	Status of Charger Mode 000 = Charger off 001 = Charging suspended due to temperature (see battery charger state diagram) 010 = Pre-charge in progress 011 = Fast-charge constant current mode in progress 100 = Fast-charge constant voltage mode in progress 101 = Maintain charge in progress 110 = Maintain charger timer done 111 = Charger fault condition (see battery charger state diagram)										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 11. Status1 Register (0x07)

ADDRESS:	0x07									
MODE:	Read Only									
BIT	7	6	5	4	3	2	1	0		
NAME	_	—	ILim	UsbOVP	UsbOk	ChgJEITA SD	ChgJEITA Reg	ChgTmo		
ILim	CHGIN Input Current Limit 0 = CHGIN input current below limit 1 = CHGIN input current limit active									
UsbOVP	Status of CHGIN OVP 0 = CHGIN overvoltage not detected 1 = CHGIN overvoltage detected									
UsbOk	Status of CHGIN Input 0 = CHGIN Input not present or outside of valid range 1 = CHGIN Input present and valid									
ChgJEITASD	Status of Thermal Shutdown 0 = Charger in normal operating mode 1 = Charger is in thermal shutdown									
ChgJEITAReg	Status of Thermal Regulation 0 = Charger is functioning normally, or disabled 1 = Charger is running in thermal regulation mode and charging current is being actively reduced according to JEITA settings									
ChgTmo	Status of Time-Out Condition 0 = Charger is running normally, or disabled 1 = Charger has reached a time-out condition									
PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 12. Status2 Register (0x08)

ADDRESS:	0x08										
MODE:	Read Only										
BIT	7	6	5	4	3	2	1	0			
NAME	ThmSD	ThmSD BstFlt ThmBuck2 ThmBuck1 UVLOLD 02 UVLOLD01 ThmLD02 ThmLD01									
ThmSD	0 = Device operating normally 1 = Device in thermal shutdown										
BstFlt	0 = HV Boost operating normally 1 = HV Boost in fault mode due to overcurrent or thermal shutdown										
ThmBuck2	0 = Buck2 operating normally 1 = Buck2 in thermal shutdown										
ThmBuck1	0 = Buck1 ope 1 = Buck1 in t	•	•								
UVLOLDO2	0 = LDO2 ope 1 = LDO2 UV	•	ly								
UVLOLDO1	0 = LDO1 ope 1 = LDO1 UV	•	ly								
ThmLDO2	0 = LDO2 operating normally 1 = LDO2 in thermal shutdown										
ThmLDO1	0 = LDO1 operating normally 1 = LDO1 in thermal shutdown										

Table 13. Status3 Register (0x09)

ADDRESS:	0x09										
MODE:	Read Only										
BIT	7	6	5	4	3	2	1	0			
NAME	APCmdResp SysErr — LRALock LRAAact BBstThm SysBatLim ChgSysLim										
APCmdResp	AP Command Response Ready 0 = APResponse register is empty 1 = APResponse register contains an opcode										
SysErr	System Error Detect 0 = No system error 1 = System error detected. See SystemError (register 0x0B)										
LRALock	0 = Haptic driver is not active or has not yet locked onto LRA resonant frequency 1 = Haptic driver has locked onto LRA resonant frequency										
LRAAct	0 = LRA driver 1 = LRA driver										
BBstThm	0 = Buck-boost 1 = Buck-boost		erating norma thermal shutd	2							
SysBatLim	0 = Charge current is not being actively reduced to regulate SYS 1 = Charge current actively being reduced to regulate SYS collapse										
ChgSysLim	0 = Input current limit normal 1 = Input current limit being reduced to regulate CHGIN collapse										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 14. SystemError Register (0x0B)

ADDRESS:	0x0B									
MODE:	Read Only									
BIT	7	6	5	4	3	2	1	0		
NAME				System	Error[7:0]					
	0x01 - MA_S 0x02 - MA_S 0x03 - MA_S 0x04 - MA_S expired	YSERROR_N YSERROR_B YSERROR_B YSERROR_B YSERROR_H	OOT_WDT: F OOT_SWRS IPT_TIMEOU	Restart due to a TREQ: Restart T: Haptic driver	after Hard-R disabled afte	eset procedure er timeout set th				
SystemError[7:0]	temError[7:0] 0x10 - MA_SYSERROR_APCMD_INPROGRESS: Attempt to use an AP command before previous com completed 0x11 - MA_SYSERROR_APCMD_WRITEPROTECT: Attempt to use a write protected command or inva password 0x12 - MA_SYSERROR_APCMD_UNKNOWN: Attempt to use an undefined command 0x13 - MA_SYSERROR_APCMD_FAIL: AP command failed to execute									
	side switch 0x21 - MA_S side switch 0x22 - MA_S side switch 0x23 - MA_S side switch 0x24 - MA_S 0x25 - MA_S	YSERROR_H YSERROR_H YSERROR_H YSERROR_H	IPT_DRP_HIC IPT_DRN_LO IPT_DRN_HIC IPT_THM_ER IPT_SYS_TH	G: Haptic driver W: Haptic drive G: Haptic driver R: Haptic drive	disabled due er disabled du disabled due r disabled du	ue to overcurren e to overcurrent ue to overcurrer e to overcurrent ue to thermal sh ed due to SYS fa	condition on th nt condition on t condition on th utdown	e DRP high- he DRN low-		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Interrupt Mask Registers

Table 15. IntMask0 Register (0x0C)

ADDRESS:	0x0C	0x0C									
MODE:	Read/Write	•									
BIT	7	6	5	4	3	2	1	0			
NAME	ThmStat IntM	ChgStat IntM	ILimIntM	UsbOVP IntM	UsbOk IntM	ChgJEITASD IntM	ThmJEITA RegIntM	ChgTmo IntM			
ThmStatIntM	0 = Maske	ThmStatIntM masks the ThmStatInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked									
ChgStatIntM	0 = Maske	ChgStatIntM masks the ChgStatInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked									
lLimIntM	0 = Maske	ILimIntM masks the ILimInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked									
UsbOVPIntM	UsbOVPIn 0 = Maske 1 = Not ma		UsbOVPInt	interrupt in th	ne Int0 registe	er (0x03).					
UsbOkIntM	UsbOkIntM 0 = Maske 1 = Not ma		sbOkInt inte	errupt in the In	nt0 register (0	x03).					
ChgJEITASDIntM	ChgThmSl 0 = Maske 1 = Not ma	d	he ChgThm	SDInt interrup	pt in the Int0 i	register (0x03).					
ChgJEITARegIntM	ThmRegIntM masks the ThmRegInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked										
ChgTmoIntM	ChgTmoIntM masks the ChgTmoInt interrupt in the Int0 register (0x03). 0 = Masked 1 = Not masked										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 16. IntMask1 Register (0x0D)

ADDRESS:	0x0D	0x0D								
MODE:	Read/Write									
BIT	7	6	5	4	3	2	1	0		
NAME	ThmSd IntM	BstEltIntM BstEltIntM								
ThmSdIntM	0 = Masked	ThmSdIntM masks the ThmSdInt interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked								
BstFltIntM	0 = Masked	BstFltIntM masks the BstFltInt interrupt in the Int1 register (0x04). = Masked = Not masked								
ThmBuck2IntM	0 = Masked	ThmBuck2IntM masks the ThmBuck2Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked								
ThmBuck1IntM	Masks the Th 0 = Masked 1 = Not mask	mBuck1Int inte	errupt in the In	t1 register (0x0	04).					
UVLOLDO2IntM	Masks the UN 0 = Masked 1 = Not mask	/LOLDO2Int in ed	terrupt in the I	nt1 register (0	x04).					
UVLOLDO1IntM	Masks the U\ 0 = Masked 1 = Not mask	/LOLDO1Int in ed	terrupt in the I	nt1 register (0	x04).					
ThmLDO2IntM	0 = Masked	Masks the ThmLDO2Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked								
ThmLDO1IntM	Masks the ThmLDO1Int interrupt in the Int1 register (0x04). 0 = Masked 1 = Not masked									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 17. IntMask2 Register (0x0E)

ADDRESS:	0x0E								
MODE:	Read/Write								
BIT	7	6	5	4	3	2	1	0	
NAME	APCmd RespIntM	SysErr IntM	—	LRALock IntM	LRAAct IntM	BBstThm IntM	SysBatLim IntM	ChgSys LimIntM	
APCmdRespIntM	0 = Masked	Masks the APCmdRespInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked							
SysErrIntM	0 = Masked	Aasks the SysErrInt interrupt in the Int2 register (0x05). = Masked = Not masked							
LRALockIntM	0 = Masked	Masks the LRALockInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked							
LRAActIntM	Masks the L 0 = Masked 1 = Not mas		rrupt in the Int	2 register (0x0	5).				
BBstThmIntM	Masks the B 0 = Masked 1 = Not mas		errupt in the Ir	nt2 register (0x	05).				
SysBatLimIntM	Masks the SysBatLimInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked								
ChgSysLimIntM	Masks the ChgSysLimInt interrupt in the Int2 register (0x05). 0 = Masked 1 = Not masked								

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

AP Interface Registers

Table 18. APDataOut0 Register (0x0F)

ADDRESS:	0x0F							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData	Out0[7:0]			
APDataOut0[7:0]	Data register	0 for AP write	e commands.					

Table 19. APDataOut1 Register (0x10)

ADDRESS:	0x10							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData	Out1[7:0]			
APDataOut1[7:0]	Data register	1 for AP write	e commands.					

Table 20. APDataOut2 Register (0x11)

ADDRESS:	0x11							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData	Out2[7:0]			
APDataOut2[7:0]	Data register	2 for AP write	e commands.					

Table 21. APDataOut3 Register (0x12)

ADDRESS:	0x12							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData	Out3[7:0]		•	
APDataOut3[7:0]	Data register	r 3 for AP write	e commands.					

Table 22. APDataOut4 Register (0x13)

ADDRESS:	0x13							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData	Out4[7:0]			
APDataOut4[7:0]	Data register	4 for AP write	e commands.					

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 23. APDataOut5 Register (0x14)

ADDRESS:	0x14							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData(Out5[7:0]			
APDataOut5[7:0]	Data register	5 for AP write	commands.					

Table 24. APDataOut6 Register (0x15)

ADDRESS:	0x15							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APData	Out6[7:0]			
APDataOut6[7:0]	Data register	6 for AP write	e commands.					

Table 25. APCmdOut Register (0x17)

ADDRESS:	0x17							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				APCmd	Out[7:0]			
APCmdOut[7:0]	Opcode com	mand register						

Table 26. APResponse Register (0x18)

ADDRESS:	0x18							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME				APResp	onse [7:0]			
APResponse[7:0]	AP comman	d response re	gister					

Table 27. APDataIn0 Register (0x19)

ADDRESS:	0x19							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME				APData	In0[7:0]			
APDataIn0[7:0]	Data register	0 for AP read	commands.					

Table 28. APDataIn1 Register (0x1A)

ADDRESS:	0x1A	Dx1A							
MODE:	Read Only	Read Only							
BIT	7	6	5	4	3	2	1	0	
NAME				APData	In1[7:0]	• •			
APDataIn1[7:0]	Data register	Data register 1 for AP read commands.							

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 29. APDataIn2 Register (0x1B)

ADDRESS:	0x1B							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME				APData	In2[7:0]			
APDataIn2[7:0]	Data register	2 for AP read	commands.					

Table 30. APDataIn3 Register (0x1C)

ADDRESS:	0x1C							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME				APData	lln3[7:0]			
APDataIn3[7:0]	Data register	3 for AP read	commands.					

Table 31. APDataIn4 Register (0x1D)

ADDRESS:	0x1D							
MODE:	Read Only							
BIT	7	6	5	4	3	2	1	0
NAME				APData(Dut4[7:0]		~	
APDataOut4[7:0]	Data register	4 for AP write	commands.					

Table 32. APDataIn5 Register (0x1E)

ADDRESS:	0x1E	Jx1E								
MODE:	Read Only	lead Only								
BIT	7	6	5	4	3	2	1	0		
NAME				APData	In5[7:0]	·				
APDataIn5[7:0]	Data register	5 for AP read	commands.							

Buck1 DVS Registers

Table 33. Buck1I2CDVS Register (0x1F)

ADDRESS:	0x1F	0x1F									
MODE:	Read/Write	Read/Write									
BIT	7	7 6 5 4 3 2 1 0									
NAME	_	Buck1DVS Buck1DVS									
Buck1DVSEn		700V 725V	0 0	and MPC0 = 1.	. 0.700V to 2.2	75V, linear sca	ale, increments	s of 25mV.			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

LDO Direct Register

Table 34. LDODirect Register (0x20)

ADDRESS:	0x20	0x20									
MODE:	Read/Write										
BIT	7	7 6 5 4 3 2 1 0									
NAME	_	—	_	—	_	_	LDO2Dir En	LDO1Dir En			
LDO2DirEn	0 = LDO2 Of	LDO2 Direct Enable. Valid only if LDO2En = 11 0 = LDO2 Off 1 = LDO2 On									
LDO1DirEn	0 = LDO1 Of	1 = LDO2 On LDO1 Direct Enable Valid only if LDO1En = 11 0 = LDO1 Off 1 = LDO1 On									

MPC Direct Registers

Table 35. MPCDirectWrite Register (0x21)

ADDRESS:	0x21										
MODE:	Read/Write										
BIT	7	6	5	4	3	2	1	0			
NAME	_	MPC4Write MPC3Write MPC2Write MPC1Write MPC0Write									
MPC4Write	0 = set MPC	MPC4 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC4 low 1 = set MPC4 high									
MPC3Write	0 = set MPC	MPC3 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC3 low 1 = set MPC3 high									
MPC2Write	MPC2 Direc 0 = set MPC 1 = set MPC	2 low	0 if MPC is co	nfigured as out	put (GPIO_HiZ	ZB = 1))					
MPC1Write	0 = set MPC	MPC1 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC1 low 1 = set MPC1 high									
MPC0Write	MPC0 Direct Write (returns 0 if MPC is configured as output (GPIO_HiZB = 1)) 0 = set MPC0 low 1 = set MPC0 high										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 36. MPCDirectRead Register (0x22)

ADDRESS:	0x22										
MODE:	Read Only										
BIT	7	6	5	4	3	2	1	0			
NAME	_	_	_	MPC4Read	MPC3Read	MPC2Read	MPC1Read	MPC0Read			
MPC4Read	0 = MPC4 is I	MPC4 Direct Readback 0 = MPC4 is low 1 = MPC4 is high									
MPC3Read	0 = MPC3 is I	MPC3 Direct Readback 0 = MPC3 is low 1 = MPC3 is high									
MPC2Read	MPC2 Direct 0 = MPC2 is 1 1 = MPC2 is 1	ow									
MPC1Read	0 = MPC1 is I	MPC1 Direct Readback 0 = MPC1 is low 1 = MPC1 is high									
MPC0Read	MPC0 Direct 0 = MPC0 is I 1 = MPC0 is I	OW									

Table 37. DVSVIt1 Register (0x23)

ADDRESS:	0x23	0x23									
MODE:	Read/Write	Read/Write									
BIT	7	6	5	4	3	2	1	0			
NAME	_	— — Buck1DVSVSet1[5:0]									
Buck1DVSV Set1[5:0]		00V 25V	0 0	nd MPC0 = 1.	0.700V to 2.27	5V, linear scale	e, increments of	5 25mV.			

Table 38. DVSVIt2 Register (0x24)

ADDRESS:	0x24										
MODE:	Read/Write										
BIT	7	7 6 5 4 3 2 1 0									
NAME	—	— — Buck1DVSVSet2[5:0]									
Buck1DVSV Set2[5:0]		00V 25V	0 0	nd MPC0 = 0. (0.700V to 2.27	5V, linear scale	, increments of	f 25mV.			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 39. DVSVIt3 Register (0x25)

ADDRESS:	0x25									
MODE:	Read/Write									
BIT	7	6	5	4	3	2	1	0		
NAME	— — Buck1DVSVSet3[5:0]									
Buck1DVSV Set3[5:0]		00V 25V	0 0	and MPC0 = 1.	0.700V to 2.27	75V, linear sca	le, increments	of 25mV.		

Haptic Braking Registers

Table 40. AutoBrkCfg0 Register (0x26)

ADDRESS:	0x26									
MODE:	Read/Write									
BIT	7	7 6 5 4 3 2 1 0								
NAME	_	AutoBrk AutoBrkFltr PeakMeas SatStop								
AutoBrkPeak Meas	 BEMF Amplitude Detection Sample Points Determines if two or four BEMF sample points are used during automatic braking. 0 = Four sample points are used to measure the BEMF amplitude 1 = Two sample points are used to measure the BEMF amplitude 									
AutoBrkFltrSat Stop	If enabled, th during a brak 0 = Do not e>	ing window wi kit braking whe	aking function thin one of the n the zero cro	exits when the BrkCyc[4:0] h ssing compara	alf periods. tor counter is s	saturated	g comparator is	s saturated		
AutoBrkDis	1 = Exit braking when the zero crossing comparator counter is saturated Automatic Braking Disable 0 = Automatic braking enabled 1 = Automatic braking disabled									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 41. AutoBrkCfg1 Register (0x27)

ADDRESS:	0x27	0x27								
MODE:	Read/Write									
BIT	7	7 6 5 4 3 2 1 0								
NAME		AutoBrkMeasWdw [3:0] AutoBrkMeasTh [1:0] AutoBrkMeasEnd [1:0]								
AutoBrkMeas Wdw [3:0]		tude Detection BEMF amplitud		nt window duri	ng automatic l	oraking. LSB =	128/25.6MHz			
AutoBrkMeas Th [1:0]		01 = 5.0mV 10 = 7.5mV								
AutoBrkMeas End[1:0]	Sets the num	tude Detection iber of consec than AutoBrkN	utive BEMF ar							

Haptic RAM Registers

Table 42. HptRAMAddr Register (0x28)

ADDRESS:	0x28							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME				HptRAM	Add[7:0]			
HptRAMAdd[7:0]	RAM address	s to which hap	tic pattern data	a in registers 0	x29, 0x2A, 0x2	2B will be writt	en.	

Table 43. HptRAMDataH Register (0x29)

ADDRESS:	0x29							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME	nLSx	[1:0]	AmpSign			Amp[6:2]		

Table 44. HptRAMDataM Register (0x2A)

ADDRESS:	0x2A								
MODE:	Read/Write								
BIT	7	6	5	4	3	2	1	0	
NAME	Amp	Amp[1:0] Dur[4:0] Wait[4]							

Table 45. HptRAMDataL Register (0x2B)

ADDRESS:	0x2B							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME		Wai	t[3:0]			Rpt	[3:0]	

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

LED Direct Registers Table 46. LEDStepDirect Register (0x2C)

ADDRESS:	0x2C								
MODE:	Read/Write								
BIT	7	6	5	4	3	2	1	0	
NAME	LED2Open	LED1Open	LED0Open	_	LDO1_ MPC2CNT	LDO1_ MPC2CNF	LEDIS	tep[1:0]	
LED2Open	LED2 Open detection (Read only) $0 = V_{LED2} > V_{LED_DET}$ $1 = V_{LED2} \le V_{LED_DET}$ or LED2 disabled								
LED1Open	0 = V _{LED1} >	LED1 Open detection (Read only) $0 = V_{LED1} > V_{LED_DET}$ $1 = V_{LED1} \le V_{LED_DET}$ or LED1 disabled							
LED0Open	LED0 Open detection (Read only) $0 = V_{LED0} > V_{LED_{DET}}$ $1 = V_{LED0} \le V_{LED_{DET}}$ or LED0 disabled								
LDO1_ MPC2CNT	0 = MPC2 ha	Control Bit LDO1_MPC2C as no effect on PC2CNF is va	LDO1	-	bled.				
LDO1_ MPC2CNF	Sets the effe 0 = MPC2 cc	Configuration ct of MPC2 on ontrols LDO/SV ontrols LDO1 E	LDO1 when L / mode of LDC	01 (MPC2 Low	= LDO mode,	-	,	/ mode).	
LEDIStep[1:0]	LED Direct C 00 = 0.6mA 01 = 1.0mA 10 = 1.2mA 11 = RESER	Current Step Re	egister						

Table 47. LED0Direct Register (0x2D)

ADDRESS:	0x2D										
MODE:	Read/Write	Read/Write									
BIT	7	7 6 5 4 3 2 1 0									
NAME	LED0En[2:0] LED0ISet[4:0]										
LED0En[2:0]	000 = Off 001 = LED0 C 010 = Control 011 = Control 100 = Control 101 = Control	LED0 Driver Enable 000 = Off 001 = LED0 On 010 = Controlled by internal charger status signal 011 = Controlled by MPC0 100 = Controlled by MPC1 101 = Controlled by MPC2 110 = Controlled by MPC3									
LED0ISet[4:0]	LED0 Direct : LED0 current 0x00 = 0.6m/ 0x01 = 1.2m/ 0x18 = 15mA/	t in mA is give A/1.0mA/1.2r A/2.0mA/2.4r	nA	Set[4:0] + 1) x	LEDIStep[1	:0]					

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 48. LED1Direct Register (0x2E)

ADDRESS:	0x2E									
MODE:	Read/Write									
BIT	7	7 6 5 4 3 2 1 0								
NAME	LED1En[2:0] LED1ISet[4:0]									
LED1En[2:0]	LED1 Driver E 000 = Off 001 = LED1 C 010 = Controll 011 = Controll 100 = Controll 101 = Controll 110 = Controll 111 = Controll	On led by interna led by MPC0 led by MPC1 led by MPC2 ed by MPC3	charger statu	s signal						
LED1ISet[4:0]	LED1 Direct 3 LED1 current 0x00 = 0.6m/ 0x01 = 1.2m/ 0x18 = 15mA/	t in mA is give A/1.0mA/1.2r A/2.0mA/2.4r	ηA	Set[4:0] + 1) x	LEDIStep[1	:0]				

Table 49. LED2Direct Register (0x2F)

ADDRESS:	0x2F									
MODE:	Read/Write									
BIT	7 6 5 4 3 2 1									
NAME		LED2En[2:0]				LED2ISet[4:0]				
LED2En[2:0]	LED2 Driver E 000 = Off 001 = LED2 C 010 = Controll 011 = Controll 100 = Controll 101 = Controll 110 = Controll 111 = Controll	on led by interna ed by MPC0 led by MPC1 led by MPC2 ed by MPC3	charger statu	is signal						
LED2ISet[4:0]	LED2 Direct 3 LED2 current 0x00 = 0.6m/ 0x01 = 1.2m/ 0x18 = 15mA/	in mA is give \/1.0mA/1.2r \/2.0mA/2.4r	ηΑ	Set[4:0] + 1) x	: LEDIStep[1	:0]				

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Haptic Direct Registers

Table 50. HptDirect0 Register (0x30)

ADDRESS:	0x30									
MODE:	Read/Write									
BIT	7	6	5	4	3	2	1	0		
NAME	—	_	—	—	_	HptOffImp	HptThmProt Dis	HptOCPr otDis		
HptOffImp	0 = When hap	Haptic Driver Output Off State Impedance 0 = When haptic driver is disabled, outputs are strongly shorted to GND through low-side driver FETs. 1 = When haptic driver is disabled, outputs are shorted to GND with 15kΩ pull-down.								
HptThmProtDis	If HptThmProt = 0x24 is issu 0 = Thermal p	Haptic Driver Thermal Protection Disable If HptThmProtDis = 0 and the haptic driver shuts down due to an over temperature condition, SystemError[7:0] = 0x24 is issued and HptLock = 1. See Opcode 0xA8 for restarting the haptic driver 0 = Thermal protection enabled. Haptic driver will shut down if $T_J \ge 150^{\circ}C$ (typ) 1 = Thermal protection disabled.								
HptOCProtDis	Haptic Driver Overcurrent Protection Disable If HptOCProtDis = 0 and the haptic driver shuts down due to an overcurrent condition, SystemError[7:0] will equal to one of four codes (0x20-0x23) is issued and HptLock = 1. See Opcode 0xA8 for restarting the haptic driver 0 = Overcurrent protection enabled. Haptic driver will shut down if current exceeds 1A (typ) 1 = Overcurrent protection disabled.									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 51. HptDirect1 Register (0x31)

ADDRESS:	0x31							
MODE:	Read/Write							
BIT	7	6	5	4	3	2	1	0
NAME	HptExtTrig	HptRamEn	HptDrvEn			HptDrvMode[4:0]	
HptExtTrig	Haptic driver externe respectively). 0 = No pattern tri 1 = Vibration trigg	iggered.	attern for ETR	G and RAMH	PI driver mode	e (HptDrvMode =	01100, 10010	'a
HptRamEn	Haptic RAM Bloc 0 = RAM disable 1 = RAM enabled	d.						
HptDrvEn	Haptic Driver Ena In all modes, the HptDrvMod[4:0]. must be set to "0 0 = Haptic driver 1 = Haptic driver	haptic driver n The HptDrvEn 0000" before th block disabled	bit must rema he haptic drive I.	ain set during	the vibration.	Once vibration fi	nishes, HptDrv	
HptDrvMode [4:0]	Haptic Driver Mo 00000 = Disable 00001 = Enable 00010 = Enable 00010 = Enable 00100 = Enable 00101 = Enable 00101 = Enable 00111 = Enable 01001 = Enable 01001 = Enable 01010 = Enable 01010 = Enable 01101 = Enable 01101 = Enable details) 01111 = Enable details) 01111 = Enable details) 01111 = Enable details) 01000 = Enable details) 10000 = Enable details) 10001 = Enable details) 10001 = Enable details) 10001 = Enable details)	haptic driver PPWM0 mode PPWM1 mode PPWM2 mode PPWM3 mode PPWM4 mode RTI2C mode a ETRG0 mode. ETRG1 mode. ETRG1 mode. ETRG3 mode. ETRG4 mode. ETRGI mode v RAMHP0 mode RAMHP1 mode RAMHP1 mode RAMHP2 mode	and provide a and provide a and provide a and provide a nd provide a Provide a puls Provide a puls Provide a pul Provide a pul Provide a pul Provide a pul Provide a puls ia I2C. Set Hp e. Provide a puls e. Provide a puls factoria	amplitude bas amplitude bas amplitude bas amplitude bas rrent output a se on MPC1 t se on MPC2 t se on MPC2 t se on MPC3 t otExtTrg(0x31 ulse on MPC4 ulse on MPC4 ulse on MPC4 ulse on MPC4 ulse on MPC4	ed on PWM d ed on PWM d ed on PWM d ed on PWM d mplitude base o start vibratic to start vibratic to start vibratic to start vibratic (7]) bit to start (7]) bit to start 0 to start vibra 1 to start vibra 2 to start vibra 3 to start vibra 4 to start vibra	uty cycle on MPC uty cycle on MPC uty cycle on MPC uty cycle on MPC d on the contents on (See "ETRG M on (See "ETRG M on (See "ETRG M on (See "ETRG M on (See "ETRG M tion (See "ETRG M tion (See "RAMH tion (See "RAMH tion (See "RAMH	21 22 23 24 s of HptRTI2C lode" section f lode" section f lode" section f lode" section f lode" section f ETRG Mode" secti IP Mode" secti IP Mode" secti IP Mode" secti IP Mode" secti	for details) for details) for details) for details) for details) for details) section for ion for on for ion for ion for

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 52. HptRTI2CAmp Register (0x32)

ADDRESS:	0x32	0x32								
MODE:	Read/Write	Read/Write								
BIT	7	6	5	4	3	2	1	0		
NAME	HptRTI2C Sign	HptR1/2CAmpl6:01								
HptRTI2CSign	Sign of hap	ign of haptic pattern amplitude in RTI2C mode (HptDrvMode = 00110)								
HptRTI2Camp [6:0]	Amplitude c	amplitude of haptic pattern in RTI2C mode (HptDrvMode = 00110). LSB = V _{SYS} /128								

Table 53. HptPatRAMAddr Register (0x33)

ADDRESS:	0x33	0x33								
MODE:	Read/Writ	Read/Write								
BIT	7	6	5	4	3	2	1	0		
NAME		HptPatRAMAddr[7:0]								
HptPatRAMAddr [7:0]		Address of first sample in vibration pattern to be run in RAMHP_ mode (HptDrvMode = 01101, 01111, 10000, 10001, 10010)								

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

AP Command Register Descriptions

GPIO Config Commands

Table 54. 0x01 – GPIO_Config_Write

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x01)	0	0	0	0	0	0	0	1			
APDataOut0	_	—	_	GPIO0Cmd	GPI000D	GPIO0HiZB	GPIO0Res	GPIO0Pup			
APDataOut1	—	GPIO1Cmd GPIO1OD GPIO1HiZB GPIO1Res GPIO1Pup									
APDataOut2	—	GPIO2Cmd GPIO2OD GPIO2HiZB GPIO2Res GPIO2Pup									
APDataOut3	—										
APDataOut4	—	—	—	GPIO4Cmd	GPIO40D	GPIO4HiZB	GPIO4Res	GPIO4Pup			
GPIO_Cmd	Valid only 0 = MPC_	GPIO Output Control /alid only if GPIO_ is configured as output (GPIO_HiZB = 1)) = MPC_ output controlled by AP command = MPC_ output controlled by I ² C direct register									
GPIO_OD	Valid only 0 = MPC_	GPIO Output Configuration Valid only if GPIO_ is configured as output (GPIO_HiZB = 1) 0 = MPC_ is push-pull connected to BK2OUT 1 = MPC is open drain									
GPIO_HiZB		ction is Hi-Z. Input b is not Hi-Z. Ou		bled							
GPIO_Res	Valid only 0 = Resiste	GPIO Resistor Presence Valid only if GPIO_ is configured as input (GPIO_HiZB = 0) 0 = Resistor not connected to MPC_ 1 = Resistor connected to MPC_									
GPIO_Pup	Valid only 0 = Pulldov	GPIO Resistor Configuration Valid only if there is a resistor on GPIO_ (GPIO_Res = 1) 0 = Pulldown connected to MPC_ 1 = Pullup to V _{CCINT} connected MCP_									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 55. GPIO_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0x01)	0	0	0	0	0	0	0	1

Table 56. 0x02 – GPIO_Config_Read

MODE	Read	lead								
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0x02)	0	0	0	0	0	0	1	0		

Table 57. GPIO_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x02)	0	0	0	0	0	0	1	0
APDataln0	_	_	_	GPIO0Cmd	GPI000D	GPIO0HiZB	GPI00Res	GPIO0Pup
APDataIn1	—	—	—	GPIO1Cmd	GPI010D	GPIO1HiZB	GPI01Res	GPIO1Pup
APDataln2	_	—	_	GPIO2Cmd	GPIO2OD	GPIO2HiZB	GPIO2Res	GPIO2Pup
APDataln3	_	_	_	GPIO3Cmd	GPIO3OD	GPIO3HiZB	GPIO3Res	GPIO3Pup
APDataln4	—	—	—	GPIO4Cmd	GPIO40D	GPIO4HiZB	GPIO4Res	GPIO4Pup

Table 58. 0x03 – GPIO_Control_Write

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	В0
APCmdOut (0x03)	0	0	0	0	0	0	1	1
APDataOut0	_	_	_	GPIO4Out	GPIO3Out	GPIO2Out	GPIO1Out	GPI00Out
GPIO_Out	0 = Set GPIC	GPIO4Out GPIO3Out GPIO2Out GPIO1Out GPIO0Out GPIO1Out GPIO0Out GPIO1Out GPIO0Out GPIO1Out GPIO0Out GPIO1Out GPIO0Out GPIO1Out GPIO1Out GPIO0Out GPIO1Out GPIO						

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 59. GPIO_Control_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x03)	0	0	0	0	0	0	1	1

Table 60. 0x04 – GPIO_Control_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x04)	0	0	0	0	0	1	0	0

Table 61. GPIO_Control_Read Response

MODE	Write											
BIT	B7	B6	B5	B4	B3	B2	B1	B0				
APResponse (0x04)	0	0	0	0	0	1	0	0				
APDataIn0	_	GPIO4Out GPIO3Out GPIO2Out GPIO1Out GPIO0Out										
APDataIn1	_	_	_	GPIO4Stat	GPIO3Stat	GPIO2Stat	GPIO1Stat	GPIO0Stat				
GPIO_Stat	_											

Table 62. 0x06 – MPC_Config_Write

MODE		Write								
BIT		B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0	x06)	0	0	0	0	0	1	1	0	
APDataOut0 MPC0		BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn	
APDataOut1 MPC1		BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn	
APDataOut2	MPC2	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn	
APDataOut3	MPC3	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn	
APDataOut4	MPC4	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn	
Shaded fields are defaulted to 1 if the corresponding resources contain the following OTP setting:										

XXXSeq = 111 (controlled by BstEn after 100% of Boot/POR Process Delay Control)

XXXEn = 10 (MPC registers control)

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 62. 0x06 – MPC_Config_Write (continued)

BBstMPCEn	Buck-Boost Enable Configuration Effective only when BBstSeq = 111 and BBstEn = 10 0 = MPC_ has no effect on Buck-boost 1 = Buck-boost enabled when MPC_ is high
SFOUTMPCEn	SFOUT LDO Enable Configuration Effective only when SFOUTEn = 10 0 = MPC_has no effect on SFOUT LDO 1 = SFOUT LDO enabled when CHGIN is present and MPC_ is high
CPMPCEn	Charge Pump Enable Configuration Effective only when CPSeq = 111 and CPEn = 10 0 = MPC_has no effect on Charge Pump 1 = Charge Pump enabled when MPC_ is high
LDO2MPCEn	LDO2 Enable Configuration Effective only when LDO2Seq = 111 and LDO2En = 10 0 = MPC_has no effect on LDO2 1 = LDO2 enabled when MPC_ is high
LDO1MPCEn	LDO1 Enable Configuration Effective only when LDO1Seq = 111 and LDO1En = 10 0 = MPC_has no effect on LDO1 1 = LDO1 enabled when MPC_ is high
Buck2MPCEn	Buck2 Enable Configuration Effective only when Buck2Seq = 111 and Buck2En = 10 0 = MPC_ has no effect on Buck2 1 = Buck2 enabled when MPC_ is high
Buck1MPCEn	Buck1 Enable Configuration Effective only when Buck1Seq = 111 and Buck1En = 10 0 = MPC_ has no effect on Buck1 1 = Buck1 enabled when MPC_ is high
BstMPCEn	Boost Enable Configuration Effective only when BstSeq = 111 and BstEn = 10 0 = MPC_ has no effect on Boost 1 = Boost enabled when MPC_ is high

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 63. MPC_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0x06)	0	0	0	0	0	1	1	0

Table 64. 0x07 – MPC_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	В0
APCmdOut (0x07)	0	0	0	0	0	1	1	1

Table 65. MPC_Config_Read Response

BIT		B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x07)		0	0	0	0	0	1	1	1
APDataIn0	MPC0	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn
APDataIn1	MPC1	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn
APDataIn2	MPC2	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn
APDataIn3	MPC3	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn
APDataIn4	MPC4	BBstMPC En	SFOUTM PCEn	CPMP CEn	LDO2MP CEn	LDO1MP CEn	Buck2MP CEn	Buck1MP CEn	BstMP CEn

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Input Current Limit Commands

Note: Registers written using opcodes 0x10, 0x14, 0x16, 0x18, 0x1A, and 0x1C are reset on charger insertion. After receiving a UsbOk interrupt, wait 10ms before writing any data using these opcodes. Failure to wait 10ms may result in the data being overwritten to the default.

Table 66. 0x10 – InputCurrent_Config_Write

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	В0		
APCmdOut (0x10)	0	0	0	1	0	0	0	0		
APDataOut0	_	— — — ILimBlank[1:0] ILimCntl[2:0]								
ILimBlank [1:0]		10 = 1ms								
ILimCntl[2:0]	CHGIN Progr (See EC table 000 = 50mA 001 =100mA 010 = 150mA 011 = 200mA 100 = 300mA 101 = 400mA 110 = 500mA 111 = 1000m		t Current Limit							

Table 67. InputCurrent_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x10)	0	0	0	1	0	0	0	0

Table 68. 0x11 – InputCurrent_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x11)	0	0	0	1	0	0	0	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 69. InputCurrent_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x11)	0	0	0	1	0	0	0	0
APDataIn0	_	_	_	ILimBla	ank[1:0]	ILimCntl[2:0]		

Thermal Shutdown Configuration Commands

Table 70. 0x12 – ThermalShutdown_Config_Read

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x12)	0	0	0	1	0	0	1	0			
APDataOut0	_	TShdnTmo[1:0]									
TShdnTmo [1:0]		tdown Retry Tii ff (See <i>Power</i>)			Figure 1f) for re	estart procedur	e)				

Table 71. ThermalShutdown_Config_Read Response

	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0x12)	0	0	0	1	0	0	1	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Charger Configuration Commands

Table 72. 0x14 – Charger_Config_Write

MODE	Write								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0x14)	0	0	0	1	0	1	0	0	
APDataOut0		— — MtChgTmr[1:0]				FChgTmr[1:0] PChgTm			
APDataOut1			VPChg[2:0]			ng[1:0]		one[1:0]	
APDataOut2	ChgAuto Stp	ChgAuto Re	BatRe	Chg[1:0]		BatRe	eg[3:0]		
APDataOut3	_	_	_	_		SysMir	ıVlt[2:0]		
MtChgTmr[1:0]	Maintain Ch 00 = 0min 01 = 15min 10 = 30min 11 = 60min		Setting						
FChgTmr[1:0]	Fast Charg 00 = 75min 01 = 150mi 10 = 300mi 11 = 600mi	n n	ng						
PChgTmr[1:0]	Pre-charge 00 = 30min 01 = 60min 10 = 120mi 11 = 240min	n]						
VPChg[2:0]	000 = 2.1V 001 = 2.25V 010 = 2.40V 011 = 2.55V 100 = 2.70V 101 = 2.85V 110 = 3.00V	Precharge Voltage Threshold Setting 000 = 2.1V 001 = 2.25V 010 = 2.40V 011 = 2.55V 100 = 2.70V 101 = 2.85V 101 = 3.00V 111 = 3.15V							
IPChg[1:0]	Precharge (00 = 0.05 x 01 = 0.1 x 10 = 0.2 x 11 = 0.3 x	FChg FChg	ng						

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 72. 0x14 – Charger_Config_Write (continued)

ChgDone[1:0]	Charge Done Threshold Setting $00 = 0.05 \times IFChg$ $01 = 0.1 \times IFChg$ $10 = 0.2 \times IFChg$ $11 = 0.3 \times IFChg$
ChgAutoStp	Charger Auto-Stop Controls the transition from Maintain Charger to Maintain Charger Done. 0 = Auto-Stop disabled. 1 = Auto-Stop enabled.
ChgAutoRe	Charger Auto-Restart Control 0 = Charger remains in maintain charge done even when V _{BAT} is less than charge restart threshold (see Charger state diagram) 1 = Charger automatically restarts when V _{BAT} drops below charge restart threshold
BatReChg[1:0]	Recharge Threshold in Relation to BatReg[3:0] 00 = BatReg - 70mV 01 = BatReg - 120mV 10 = BatReg - 170mV 11 = BatReg - 220mV
BatReg[3:0]	Battery Regulation Voltage 0000 = 4.05V 0001 = 4.10V 0010 = 4.15V 0011 = 4.20V 0100 = 4.25V 0101 = 4.30V 0110 = 4.35V 0111 = 4.40V 1000 = 4.45V 1001 = 4.5V 1011 = 4.5V 1011 = 4.6V
SysMinVlt[2:0]	System Voltage Minimum Threshold 000 : 3.6V 001: 3.7V 010: 3.8V 011: 3.9V 100: 4.0V 101: 4.1V 110: 4.2V 111: 4.3V

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 73. Charger_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x14)	0	0	0	1	0	1	0	0

Table 74. 0x15 – Charger_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x15)	0	0	0	1	0	1	0	1

Table 75. Charger_Config_Read Response

BIT	B7	B6	B5 B4		B3	B2	B1	B0
APResponse (0x15)	0	0	0 1		0	1	0	1
APDataIn0	_	_	MtChg	Fmr[1:0]	FChgTmr[1:0]		PChgTmr[1:0]	
APDataIn1	—		VPChg[2:0]		IPChg[1:0]		ChgDone[1:0]	
APDataIn2	ChgAuto Stp	ChgAuto Re	BatReC	Chg[1:0]	BatReg[3:0]			
APDataIn3	_	_	_	—	SysMinVIt[2:0]			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x16)	0	0	0	1	0	1	1	0
APDataOut0				Cold	Lim[7:0]			
APDataOut1				Cool	Lim[7:0]			
APDataOut2				Warn	nLim[7:0]			
APDataOut3				Hotl	_im[7:0]			
APDataOut4				Passv	/ord[15:8]			
APDataOut5				Pass	word[7:0]			
ColdLim[7:0]	Cold Zone E Defines the full-scale vo	falling thresh	old voltage on ⁻	THM that defin	es the cold cha	arging temperat	ure zone. 8-bi	t value, 1.8V
CoolLim[7:0]	Cool Zone E Defines the full-scale vo	falling thresho	old voltage on ⁻	THM that defin	es the cool cha	arging temperat	ure zone. 8-bi	t value, 1.8V
WarmLim[7:0]	Warm Zone Defines the full-scale vo	rising thresho	ld voltage on T	HM that define	es the cool cha	rging temperatu	ure zone. 8-bit	value, 1.8V
HotLim[7:0]	Defines the	Hot Zone Boundary Defines the rising threshold voltage on THM that defines the hot charging temperature zone. 8-bit value, 1.8V full-scale voltage.						
Password[15:0]	If Write-Prot	Thermal Limit Configuration Password If Write-Protect enabled, ChargerThermalLimits can be configured using the following password: 0x1E7A. If Write-Protect enabled, incorrect password will result in SystemError[7:0] = 0x11.						

Table 76. 0x16 – ChargerThermalLimits_Config_Write

Table 77. ChargerThermalLimits_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x16)	0	0	0	1	0	1	1	0

Table 78. 0x17 – ChargerThermalLimits_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x17)	0	0	0	1	0	1	1	1

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 79. ChargerThermalLimits_Config_Read Response

BIT	B7	B7 B6 B5 B4 B3 B2 B1 B0							
APResponse (0x17)	0	0 0 0 1 0 1 0							
APDataln0		ColdLim[7:0]							
APDataIn1				CoolLi	m[8:0]				
APDataln2		WarmLim[7:0]							
APDataln3		HotLim[7:0]							

Table 80. 0x18 – ChargerThermalReg_Config_Write

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	В0
APCmdOut (0x18)	0	0	0	1	1	0	0	0
APDataOut0	ColdChgEn		_	ColdBa	tReg[1:0]		ColdFChg[2:0]	
APDataOut1	CoolChgEn	_	_	CoolBa	tReg[1:0]		CoolFChg[2:0]	
APDataOut2	—	—	—	RoomBa	atReg[1:0]	F	RoomFChg[2:0]
APDataOut3	WarmChgEn	armChgEn — — WarmBatReg[1:0] WarmFChg[2:0]						
APDataOut4	HotChgEn	—	—	HotBat	Reg[1:0]		HotFChg[2:0]	
APDataOut5				Passwo	ord[15:8]			
APDataOut6				Passw	ord[7:0]			
ColdChgEn ColdBatReg [1:0]	Determines if of 0 = Charging of 1 = Charging e Cold Zone Bat Sets modified 00 = BatReg-1 01 = BatReg-1 10 = BatReg-5	Cold Zone Charger Control Determines if charger is enabled for cold temperature zone. = Charging disabled in cold temperature zone. = Charging enabled in cold temperature zone. Cold Zone Battery Regulation Voltage Sets modified BatReg[3:0] in the cold temperature zone. 0 = BatReg-150mV 1 = BatReg-100mV 0 = BatReg-50mV						
ColdFChg [2:0]	Cold Zone Fas Sets modified 000 = 0.2 x IFC 001 = 0.3 x IFC 010 = 0.4 x IFC 011 = 0.5 x IFC 100 = 0.6 x IFC 101 = 0.7 x IFC 110 = 0.8 x IFC	11 = BatReg Cold Zone Fast Charge Current Scaling Sets modified fast charge in the cold temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 111 = 1.0 x IFChg						

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 80. 0x18 – ChargerThermalReg_Config_Write (continued)

CoolChgEn	Cool Zone Charger Control Determines if charger is enabled for cool temperature zone. 0 = Charging disabled in cool temperature zone. 1 = Charging enabled in cool temperature zone.
CoolBatReg [1:0]	Cool Zone Battery Regulation Voltage Sets modified BatReg[3:0] in the cool temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg
CoolFChg [2:0]	Cool Zone Fast Charge Current Scaling Sets modified fast charge in the cool temperature zone. $000 = 0.2 \times IFChg$ $001 = 0.3 \times IFChg$ $010 = 0.4 \times IFChg$ $101 = 0.5 \times IFChg$ $100 = 0.6 \times IFChg$ $101 = 0.7 \times IFChg$ $111 = 0.8 \times IFChg$ $111 = 1.0 \times IFChg$
RoomBat Reg[4:3]	Room Zone Battery Regulation Voltage Sets the modified BatReg[3:0] in the room temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg
RoomFChg [2:0]	Room Zone Fast Charge Current Scaling Sets the modified fast charge in the room temperature zone. $000 = 0.2 \times IFChg$ $001 = 0.3 \times IFChg$ $010 = 0.4 \times IFChg$ $101 = 0.5 \times IFChg$ $100 = 0.6 \times IFChg$ $101 = 0.7 \times IFChg$ $111 = 1.0 \times IFChg$
WarmChg En	Warm Zone Charger Control Determines if charger is enabled for warm temperature zone. 0 = Charging disabled in warm temperature zone. 1 = Charging enabled in warm temperature zone.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 80. 0x18 – ChargerThermalReg_Config_Write (continued)

WarmBat Reg[1:0]	Warm Zone Battery Regulation Voltage Sets the modified BatReg[3:0] in the warm temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg
WarmFChg [2:0]	Warm Zone Fast Charge Current Scaling Sets the modified fast charge in the warm temperature zone. $000 = 0.2 \times IFChg$ $001 = 0.3 \times IFChg$ $010 = 0.4 \times IFChg$ $011 = 0.5 \times IFChg$ $100 = 0.6 \times IFChg$ $101 = 0.7 \times IFChg$ $111 = 1.0 \times IFChg$
HotChgEn	Hot Zone Charger Control Determines if charger is enabled for hot temperature zone. 0 = Charging disabled in hot temperature zone. 1 = Charging enabled in hot temperature zone.
HotBatReg [1:0]	Hot Zone Battery Regulation Voltage Sets the modified BatReg[3:0] in the hot temperature zone. 00 = BatReg-150mV 01 = BatReg-100mV 10 = BatReg-50mV 11 = BatReg
HotFChg [2:0]	Hot Zone Fast Charge Current Scaling Sets the modified fast charge in the hot temperature zone. 000 = 0.2 x IFChg 001 = 0.3 x IFChg 010 = 0.4 x IFChg 011 = 0.5 x IFChg 100 = 0.6 x IFChg 101 = 0.7 x IFChg 110 = 0.8 x IFChg 111 = 1.0 x IFChg
Password [15:0]	Charger Thermal Limit Configuration Password If Write protect enabled, ChargerThermalLimits can be configured using the following password: 0x1E7A If Write Protect enabled, incorrect password will result in System Error 0x11.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 81. ChargerThermalReg_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x18)	0	0	0	1	1	0	0	0

Table 82. 0x19 – ChargerThermalReg_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x19)	0	0	0	1	1	0	0	1

Table 83. ChargerThermalReg_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0x19)	0	0	0	1	1	0	0	1
APDataIn0	ColdChgEn	_	_	ColdBat	ColdBatReg[1:0]		ColdFChg[2:0]	
APDataIn1	CoolChgEn	—	—	CoolBat	Reg[1:0]	CoolFChg[2:0]		
APDataIn2	—	_	_	RoomBa	tReg[1:0]		RoomFChg[2:0]	
APDataln3	WarmChgEn	_	_	WarmBatReg[1:0] WarmFChg[2:0]				
APDataIn4	HotChgEn	—	—	HotBatF	Reg[1:0]		HotFChg[2:0]	

Table 84. 0x1A – Charger_ControlWrite

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	В0
APCmdOut (0x1A)	0	0	0	1	1	0	1	0
APDataOut0	—	_	—	_	—	—	ThmEn	ChgEn
ThmEn	0 = Thermal r	ol for Thermal monitor disable monitor enable	d					
ChgEn	On/Off Contro 0 = Charger o 1 = Charger e		does not affec	et SYS node).				

Table 85. Charger_ControlWrite Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x1A)	0	0	0	1	1	0	1	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 86. 0x1B – Charger_ControlRead

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x1B)	0	0	0	1	1	0	1	1

Table 87. Charger_Control_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x1B)	0	0	0	1	1	0	1	1
APDataIn0	_	—	_	_	_	_	ThmEn	ChgEn

Table 88. 0x1C – Charger_ JEITAHyst_ControlWrite

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0x1C)	0	0	0	1	1	1	0	0		
APDataOut0	JEITAHys En									
JEITAHys En	0 = Hysteresi	JEITA Hysteresist Control 0 = Hysteresis disabled. 1 = Hysteresis enabled.								
JEITAHys Lvl	00001 = 0.39 00010 = 0.78 	Amplitude of JEITA Hysteresis (LSB = 0.39%V _{DIG}) 00001 = 0.39%V _{DIG} 00010 = 0.78%V _{DIG}								

Table 89. Charger_JEITAHyst_ControlWrite Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x1C)	0	0	0	1	1	1	0	0

Table 90. Charger_JEITAHyst_ControlRead

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	В0
APCmdOut (0x1D)	0	0	0	1	1	1	0	1

Table 91. Charger_JEITAHyst_ControlRead Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x1D)	0	0	0	1	1	1	0	1
APDataIn0	JEITAHysEn	_	_			JEITAHysLvl		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Boost Configuration Commands

Table 92. 0x30 – Bst_Config_Write

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x30)	0	0	1	1	0	0	0	0			
APDataOut0	_	BstEn[1:0]									
APDataOut1	_	_	_	_	BstPsvDsc	BstlAdptEn	BstFastStrt	BstFetScale			
APDataOut2	— — — BstlSet[3:0]										
APDataOut3	— — BstVSet[5:0]										
BstEn[1:0]	00 = Disab 01 = Enab 10 = Contr	Boost Enable Configuration (effective only when BstSeq = 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = RESERVED									
BstPsvDsc	Boost Passive Discharge Control 0 = Boost output will be discharged only when entering Off and Hard-Reset modes. 1 = Boost output will be discharged only when entering Off and Hard-Reset modes and when BstEn is set to 000.										
BstlAdptEn	Boost Adaptive Peak Current Control 0 = Inductor peak current fixed at the programmed value by means of BstISet 1 = Inductor peak current automatically increased to provide better load regulation										
BstFastStrt	Boost Fast Start Time 0 = Time to full current capability during Startup =100ms 1 = Time to full current capability during Startup = 50ms. Precharge with 2x current										
BstFetScale	Boost FET Scaling 0 = No FET scaling 1 = Active boost FET size scaled down by half to optimize efficiency for low inductor peak current settings										
BstlSet[3:0]	25mA step 0000 = 100 0001 = 129 0010 = 150 	Boost Nominal inductor Peak Current Setting 25mA step resolution 0000 = 100mA 0001 = 125mA 0010 = 150mA									
BstVSet[5:0]	1111 = 475mA Boost Output Voltage Setting Linear scale from 5V to 20V in 250mV increments 000000 = 5V 000001 = 5.25V 111011 = 19.75V 111011 = 20V >111100 = Reserved										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 93. Bst_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x30)	0	0	1	1	0	0	0	0

Table 94. 0x31 – Bst_Config_Read

MODE	Read	Read									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x31)	0	0	1	1	0	0	0	1			

Table 95. Bst_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APResponse (0x31)	0	0	1	1	0	0	0	1			
APDataIn0	_		_	— — — BstEn[1:0]							
APDataIn1	—	—	—	—	BstPsvDsc	BstlAdptEn	BstFastStrt	BstFetScale			
APDataln2	—	—	— — — BstlSet[3:0]								
APDataln3	RESERVED	/ED — BstVSet[5:0]									
APDataIn4	—	— — — — BstSeq[2:0]									
BstSeq[2:0]	000 = Disable 001 = RESER 010 = Enabled 011 = Enabled 100 = Enabled 101 = RESER 110 = RESER	Boost Enable Configuration (Read only) 000 = Disabled 001 = RESERVED 010 = Enabled at 0% of Boot/POR Process Delay Control 011 = Enabled at 25% of Boot/POR Process Delay Control 100 = Enabled at 50% of Boot/POR Process Delay Control 101 = RESERVED 110 = RESERVED 111 = Controlled by Bst1En after 100% of Boot/POR Process Delay Control									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Buck Configuration Commands

Table 96. 0x35 – Buck1_Config_Write

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x35)	0	0	1	1	0	1	0	1			
APDataOut0	_	Buck1Psv Dsc	Buck1Sft Strt	Buck1Act Dsc	Buck1Low EMI	Buck1IAdpt En	Buck1Fet Scale	Buck1Wait ZC			
APDataOut1	— — Buck1VSet[5:0]										
APDataOut2	_	Buck1IZCSet[1:0] Buck1ISet[3:0]									
APDataOut3	_	Buck1En[1:0]									
Buck1Psv Dsc	Buck1 Passive Discharge Control 0 = Buck1 passively discharged only in Hard-Reset 1 = Buck1 passively discharged in Hard-Reset or Enable Low										
Buck1Sft Strt											
Buck1Act DSC	0 = Buck1	Buck1 Active Discharge Control 0 = Buck1 actively discharged only in Hard-Reset 1 = Buck1 actively discharged in Hard-Reset or Enable Low									
Buck1Low EMI	Buck1 Low EMI Mode 0 = Normal operation 1 = Increase rise/fall time on BLX by 3x										
Buck1IAdpt En	Buck1 Adaptive Peak Current Mode 0 = Inductor peak current fixed at the programmed value by means of Buck1ISet 1 = Inductor peak current automatically increased to provide better load regulation										
Buck1FET Scale	Reduce th 0: FET sc	rce FET Scaling ne FET size by aling disabled aling enabled	-	to optimize the	efficiency for B	uck1lset <100m	٦A				
Buck1WaitZC	Selects th efficiency should nc 0 = Buck1 1 = Buck1 - indu	Buck1 LX Sense Wait Selects the conditions needed for Buck 1 to enter the freewheeling state. When set to 1, Buck1WaitZC improves efficiency by transferring the residual energy in the inductor in case of positive zero crossing error. Buck1WaitZC should not be set to 1 if Buck1VSet < 1.6V. 0 = Buck1 can freewheel at zero-current crossing detection 1 = Buck1 can freewheel after the following conditions are met: - inductor zero crossing - BK1LX exceeds 1.6V (max)									
Buck1VSet [5:0]				rements							
	 111111 = 2.275V										
PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 96. 0x35 – Buck1_Config_Write (continued)

Buck1IZC Set[1:0]	Buck1 Zero Crossing Current Threshold Optimizes Buck1 for a given voltage setting. 00 = 10mA, Use for Buck1VSet < 1V 01 = 20mA, Use for 1V < Buck1VSet < 1.8V 10 = 30mA, Use for 1.8V < Buck1VSet < 3V 11 = 40mA, Use for Buck1VSet > 3V
Buck1ISet [3:0]	Buck1 Inductor current Peak Current Setting 25mA step 0000 = 0mA 0001 = 25mA 1111 = 375mA
Buck1En [1:0]	Buck1 Enable Configuration (effective only when Buck1Seq == 111) 00 = Disabled: BK1OUT not actively discharged unless Hard-Reset/Shutdown/Off mode 01 = Enabled 10 = Controlled by MPC_ (See MPC_Config_Write) 11 = RESERVED

Table 97. Buck1_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x35)	0	0	1	1	0	1	0	1

Table 98. 0x36 – Buck1_Config_Read

MODE	Read	Read									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x36)	0	0	1	1	0	1	1	0			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 99. Buck1_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0		
DII	D/	DO	D0	D4	БЭ	D2	ы	БV		
APResponse (0x36)	0	0	1	1	0	1	1	0		
APDataIn0	_	Buck1Psv Dsc	Buck1Fast	Buck1Act Dsc	Buck1Low EMI	Buck1En Fmax	Buck1Fet Scale	Buck1Wait ZC		
APDataIn1	_	—	- Buck1VSet[5:0]							
APDataIn2	_	—	Buck1IZCSet[1:0] Buck1ISet[3:0]							
APDataln3	—	—	—	—	—	— Buck1En[1:0]				
APDataIn4	_	_	—	—	—		Buck1Seq[2:0]			
Buck1Seq [2:0]	000 = Disat 001 = Rese 010 = Enab 011 = Enab 100 = Enab 101 = Rese 110 = Rese	oled rved led at 0% of E led at 25% of led at 50% of rved rved	Boot/ POR Pro Boot/ POR Pro	ess Delay Con cess Delay Co cess Delay Co	ntrol	elay Control				

Table 100. 0x37 – Buck1_DVSConfig_Write

MODE	Write											
BIT	B7	B6	B5	B4	B3	B2	B1	B0				
APCmdOut (0x37)	0	0	1	1	0	1	1	1				
APDataOut0	_	_			Buck1V	/Set[5:0]						
APDataOut1	_	_		Buck1AlternateVSet[5:0]								
APDataOut2	—	—	- MPC4 MPC3 MPC2 MPC1 MPC0									
Buck1VSet [5:0]	This is the v 0.7V to 2.27 000000 = 0 000001 = 0 	Buck1 Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck1 after a positive edge on MPC 0.7V to 2.275V, Linear Scale, 25mV increments 000000 = 0.7V 000001 = 0.725V 111111 = 2.275V										
Buck1Altern ateVSet[5:0]	This is the v 0.7V to 2.27 000000 = 0 000001 = 0 	Buck1 Alternate Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck1 upon writing this command or after a negative edge on MPC 0.7V to 2.275V, Linear Scale, 25mV increments 000000 = 0.7V 000001 = 0.725V 111111 = 2.275V										
MPC_	If an MPC is	s used for dyr	used for altern namic voltage so the static value	caling, all other	functions of the	at MPC are disa	abled.					

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 101. Buck1_DVSConfig_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x37)	0	0	1	1	0	1	1	1

Table 102. 0x3A – Buck2_Config_Write

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x3A)	0	0	1	1	1	0	1	0			
APDataOut0	_	Buck2Psv Dsc	Buck2Sft Strt	Buck2Act Dsc	Buck2Low EMI	Buck2lAdpt En	Buck2Fet Scale	Buck2Wait ZC			
APDataOut1	_	_			Buck2V	/Set[5:0]					
APDataOut2	_	_	Buck2IZ	CSet[1:0]		Buck2I	Set[3:0]				
APDataOut3	_	Buck2En[1:0]									
Buck2Psv DSC	0 = Buck2 pa	Buck2 Passive Discharge Control 0 = Buck2 passively discharged only in Hard-Reset 1 = Buck2 passively discharged in Hard-Reset or Enable Low									
Buck2SftStrt											
Buck2Act DSC	0 = Buck2 ac	Buck2 Active Discharge Control 0 = Buck2 actively discharged only in Hard-Reset 1 = Buck2 actively discharged in Hard-Reset or Enable Low									
Buck2Low EMI	Buck2 Low E 0 = Normal o 1 = Increase		n BLX by 3x								
Buck2IAdpt En	0 = Inductor	ive Peak Curre peak current fix peak current au	ed at the prog								
Buck2FET Scale	Buck2 Force Reduce the F 0 = FET scali 1 = FET scali	ET size by fac	tor 2. Use it to	optimize the e	fficiency for Bu	ck1lset <100m/	4				
Buck2WaitZC	efficiency by should not be 0 = Buck2 ca 1 = Buck2 ca - inductor	onditions need	e residual energ k2VSet < 1.6V the inductor ze er the following	gy in the induct ′. ero crossing po g conditions ar	tor in case of p int e met:	. When set to 1 ositive zero cro		•			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 102. 0x3A – Buck2_Config_Write (continued)

Buck2VSet [5:0]	Buck2 Output Voltage Setting 0.7V to 3.85V, Linear Scale, 50mV increments 000000 = 0.7V 000001 = 0.75V 111111 = 3.85V
Buck2IZCSet [1:0]	Buck2 Zero Crossing Current Threshold Optimizes Buck2 for a given voltage setting. 00 = 10mA, Use for Buck2VSet < 1V 01 = 20mA, Use for 1V < Buck2VSet < 1.8V 10 = 30mA, Use for 1.8V < Buck2VSet < 3V 11 = 40mA, Use for Buck2Vset > 3V
Buck2ISet [3:0]	Buck2 Inductor Current Peak Current Setting 25mA step 0000 = 0mA 0001 = 25mA 1111 = 375mA
Buck2En[1:0]	Buck2 Enable Configuration (effective only when Buck2Seq == 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = Reserved

Table 103. Buck2_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x3B)	0	0	1	1	1	0	1	0

Table 104. 0x3B – Buck2_Config_Read

MODE	Read	Read									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x3B)	0	0	1	1	1	0	1	1			

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 105. Buck2_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APResponse (0x3B)	0	0	1	1	1	0	1	1	
APDataIn0	_	Buck2Psv Dsc	Buck2Sft Strt	Buck2Act Dsc	Buck2Low EMI	Buck2IAdpt En	Buck2Fet Scale	Buck2Wait ZC	
APDataIn1	_	—	Buck2VSet[5:0]						
APDataIn2	—	—	Buck2IZCSet[1:0] Buck2ISet[3:0]						
APDataIn3	—	—	—	—	—	— Buck2En[1:0]			
APDataIn4	_	_	_	_	_		Buck2Seq[2:0]		
Buck2Seq [2:0]	000 = Dis 001 = RE 010 = Ena 011 = Ena 100 = Ena 101 = RE 110 = RE	SERVED abled at 0% of E abled at 25% of abled at 50% of SERVED	Boot/ POR Proc Boot/ POR Pro Boot/ POR Pro	, cess Delay Con ccess Delay Co ocess Delay Co	ntrol ntrol	elay Control			

Table 106. 0x3C - Buck2_DVSConfig_Write

MODE	Write			·								
BIT	B7	B6	B5	B4	B3	B2	B1	B0				
APCmdOut (0x3C)	0	0	1	1	1	1	0	0				
APDataOut0	_	— — Buck2VSet[5:0]										
APDataOut1		_		Buck2AlternateVSet[5:0]								
APDataOut2	—	—	—	MPC4	MPC3	MPC2	MPC1	MPC0				
Buck2VSet [5:0]	This is the 0.7V to 3. 000000 = 000001 = 	Buck2 Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck2 after a positive edge on MPC 0.7V to 3.85V, Linear Scale, 50mV increments 000000 = 0.7V 000001 = 0.75V 111111 = 3.85V										
Buck2Altern ateVSet[5:0]	This is the 0.7V to 3. 000000 = 000001 = 	Buck2 Alternate Voltage Setting for Dynamic Voltage Scaling Function: This is the voltage set on Buck2 upon writing this command or after a negative edge on MPC 0.7V to 3.85V, Linear Scale, 50mV increments 000000 = 0.7V 000001 = 0.75V 111111 = 3.85V										
MPC_	If an MPC	is used for dy	n used for altern namic voltage s the static value	caling, all othe	r functions of the	at MPC are disa	abled.					

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 107. Buck2_DVSConfig_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x3C)	0	0	1	1	1	1	0	0

LDO Configuration Commands

Table 108. 0x40 – LDO1_Config_Write

MODE	Write								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0x40)	0	1	0	0	0	0	0	0	
APDataOut0	_	_	_	LDO1Pas Dsc	LDO1Act Dsc	LDO1Md	LDO1	En[1:0]	
APDataOut1	_	_	LDO1VSet[5:0]						
LDO1Pas Dsc	0 = LDO1 ou		charged only e	ntering Off and ntering Off and			n the enable is	Low	
LDO1Act Dsc	0 = LDO1 ou	DO1 Active Discharge Control = LDO1 output will be actively discharged only in Hard-Reset mode = LDO1 output will be actively discharged in Hard-Reset mode and also when its Enable goes Low							
LDO1Md	When FET is is disabled. 0 = Normal L	LDO1 Mode Control When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO is disabled. 0 = Normal LDO operating mode 1 = Load switch mode. FET is either fully On or Off depending on state of LDO1En.							
LDO1En [1:0]	00 = Disabled 01 = Enabled 10 = Controll	d I ed by MPC_Co	onfig_Write cor	when LDO1Se	eq[2:0] == 111)				
LDO1VSet [5:0]	0.5V to 1.95V 000000 = 0.5 000001 = 0.5 111010 = 1.9	11 = Controlled by LDODirect register LDO1 Output Voltage Setting–Limited by input supply 0.5V to 1.95V, Linear Scale, 25mV increments 000000 = 0.5V 000001 = 0.525V 111010 = 1.95V >111010 = Limited by input supply							

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 109. LDO1_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0x40)	0	1	0	0	0	0	0	0

Table 110. 0x41 – LDO1_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x41)	0	1	0	0	0	0	0	1

Table 111. LDO1_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APResponse (0x41)	0	1	0	0	0	0	0	1		
APDataIn0		_	_	LDO1Pas Dsc	LDO1Act Dsc	LDO1Md	LDO1E	En[1:0]		
APDataIn1	—	—	—			LDO1VSet[4:0]				
APDataln2	_	LDO1Seq[2:0]								
LDO1Seq [2:0]	000 = Disable 001 = RESEF 010 = Enable 011 = Enable 100 = Enable 101 = RESEF 110 = RESEF	VED d at 0% of Boo d at 25% of Bo d at 50% of Bo VED VED	t/POR Process ot/POR Process ot/POR Process	s Delay Contro ss Delay Contro ss Delay Contr 0% of Boot/PO	ol ol	ay Control				

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 112. 0x42 – LDO2_Config_Write

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x42))	0	1	0	0	0	0	1	0			
APDataOut0	_	_	_	LDO2Pas Dsc	LDO2Act Dsc	LDO2Md	LDO2En[1:0]				
APDataOut1	_	_	_			LDO2VSet[4:0]					
LDO2Pas Dsc	0 = LDO2 out		harged only e	ntering Off and ntering Off and		odes. odes and when	the enable is	low.			
LDO2Act Dsc	0 = LDO2 out	DO2 Active Discharge Control = LDO2 output will be actively discharged only in Hard-Reset mode = LDO2 output will be actively discharged in Hard-Reset mode and also when its Enable goes Low									
LDO2Md	LDO2 Mode Control When FET is On, the output is unregulated. This setting is internally latched and can change only when the LDO2 is disabled. 0 = Normal LDO2 operating mode 1 = Load switch mode. FET is either fully On or Off depending on state of LDO2En										
LDO2En [1:0]	00 = Disabled 01 = Enabled 10 = Controlle	-	nfig_Write con	when LDO2Se	q[2:0] == 111)						
LDO2VSet [4:0]		Voltage Settin near Scale, 10 √									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 113. LDO2_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x42)	0	1	0	0	0	0	1	0

Table 114. 0x43 – LDO2_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x43)	0	1	0	0	0	0	1	1

Table 115. LDO2_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APResponse (0x43)	0	1	0	0	0	0	1	1		
APDataIn0	_	_		LDO2Pas Dsc	LDO2Act Dsc	LDO2Md	LDO2E	En[1:0]		
APDataIn1	_	_	_			LDO2VSet[4:0]				
APDataln2	_	_	_	LDO2Seq[2:0]						
LDO2Seq [2:0]	000 = Disable 001 = Enable 010 = Enable 011 = Enable 100 = Enable 101 = RESER 110 = RESER	d always when d at 0% of Boo d at 25% of Boo d at 50% of Bo RVED RVED	BAT/SYS is p t/ POR Proces ot/ POR Proce ot/ POR Proce	resent s Delay Contro ess Delay Contr ess Delay Cont 0% of Boot/PO	rol rol	ay Control				

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Charge Pump Configuration Commands

Table 116. 0x46 – ChargePump_Config_Write

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0x46)	0	1	1	1	0					
APDataOut0	_	CPEn[1:(
APDataOut1	_	— — — — — — CPPscDisch CPVSet								
CPEn[1:0]	00 = Disabled 01 = Enabled 10 = Controlle	Charge Pump Enable Configuration (effective only when CPSeq = 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = RESERVED								
CPpsvDisch	Charge Pump 0 = Disabled 1 = Enabled									
CPVSet	0 = 6.6V 1 = 5V									

Table 117. ChargePump_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x46)	0	1	0	0	0	1	1	0

Table 118. 0x47 – ChargePump_Config_Read

MODE	Read	lead								
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0x47)	0	1	0	0	0	1	1	1		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 119. ChargePump_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APResponse (0x47)	0	1	0	0	0	1	1	1			
APDataIn0	<u> </u>										
APDataIn1	_	<u> </u>									
APDataln2	_	CPSeq[2:0]									
CPSeq[2:0]	000 = Disable 001 = RESEF 010 = Enable 011 = Enable 100 = Enable 101 = RESEF 110 = RESEF	RVED ed at 0% of Bo ed at 25% of Bo ed at 50% of Bo RVED	ot/POR Proces oot/POR Proces oot/POR Proce	ss Delay Contr ess Delay Cont ess Delay Con	trol	ntrol					

SFOUT Configuration Commands

Table 120. 0x48 – SFOUT_Config_Write

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x48)	0	0	0 0	0							
APDataOut0	_	SFOUTV Set SFOUTEn[1:0]									
SFOUTV Set	SFOUT Outp 0 = 5V 1 = 3.3V										
SFOUTE n[1:0]	00 = Disabled 01 = Enabled 10 = Enabled	SFOUT LDO Enable Configuration 00 = Disabled (regardless of CHGIN) 01 = Enabled when CHGIN is present 10 = Enabled when CHGIN is present and Controlled by MPC_Config_Write command 11 = RESERVED									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 121. SFOUT_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0x48)	0	1	0	0	1	0	0	0

Table 122. 0x49 – SFOUT_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x49)	0	1	0	0	1	0	0	1

Table 123. SFOUT_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x49)	0	1	0	0	1	0	0	1
APDataln0	_	_	_	_	_	SFOUTVSet	SFOUT	En[1:0]

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

MON Mux Configuration Commands

Table 124. 0x50 – MONMux_Config_Write

MODE	Write								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0x50)	0	1	0	1	0	0	0	0	
APDataOut0	MONEn	_	MONHiZ	MONR	atioCfg[1:0]	MONCtrl[2:0]			
MONEn		ot connected			state depends or ation	n MONHIZ			
MONHIZ	MON Off Mod 0 = Pulled LO 1 = Hi-Z		ulldown resistor						
MONRatio Cfg[1:0]	MON Resistiv 00 = 1:1 01 = 2:1 10 = 3:1 11 = 4:1	ve Partition Se	elector						
MONCtrl[2:0]	000 = MON c 001 = MON c 010 = MON c 011 = MON c 100 = MON c 101 = MON c 110 = MON c	onnected to a onnected to a onnected to a onnected to a onnected to a onnected to a onnected to a	(80µs BBM after resistive partition resistive partition resistive partition resistive partition resistive partition resistive partition resistive partition resistive partition	on of BAT on of SYS on of BK2OL on of BK1OL on of L2OUT on of L1OUT on of SFOUT	JT - - -	D])			

Table 125. MONMux_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x51)	0	1	0	1	0	0	0	0

Table 126. 0x51 – MONMux_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x51)	0	1	0	1	0	0	0	1

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 127. MONMux_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x51)	0	1	0	1	0	0	0	1
APDataIn0	MONEN	_	MONHiZ	MONRat	oCfg[1:0]		MONCtrl[2:0]	

Table 128. 0x53 – ADC_Measure_Launch

MODE	Launch								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0x53)	0	1	0	1	0	0	1	1	
APDataOut0	_	ADCAvgSiz[2:0] ADCSel[2:0]							
ADCAvg Siz[2:0]		ADC Averaging Size ADC performs 2 ^{ADCAvgSiz[2:0]} consecutive averaged measurements							
ADCSel [2:0]	ADC Channe 000 = SYS 001 = MON 010 = THM 011 = CHGIN 100 = CPOU 101 = BSTOU 11x = RESER	I T JT							

Table 129. ADC_Measure_Launch Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APResponse (0x53)	0	1	0	1	0	0	1	1			
APDataIn0	_	ADCResult[1:0]									
APDataIn1	ADCMax[7:0]										
APDataIn2	ADCMin[7:0]										
APDataIn3	ADCAvg[7:0]										
ADCResult	00 = Success 01 = ADC bus 10 = ADC me	ADC Result Ready 00 = Success, measurement completed 01 = ADC busy 10 = ADC measurement aborted by Haptic Automatic Level Compensation engine 11 = RESERVED									
ADCMax[7:0]	ADC Maximu Contains the	ım Value maximum valu	e measured by	/ the ADC							
ADCMin[7:0]	ADC Minimum Value Contains the minimum value measured by the ADC										
ADCAvg[7:0]	ADC Average Value Contains the average value of 2 ^{ADCAvgSiz[2:0]} ADC measurements										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Buck-Boost Configuration Commands

Table 130. 0x70 – BBst_Config_Write

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0x70)	0	1	1	1	0	0	0	0		
APDataOut0				RESERVED	(Set to 0x00)					
APDataOut1	_	_	_	_	_		BBstlSet[2:0]			
APDataOut2	_	_				BBstVSet[4:0]				
APDataOut3	_	BBstRip Red	BBstAct Dsc	BBstPas Dsc	BBstMd	BBstInd	BBstE	En[1:0]		
BBstlSet [2:0]	000 = 0 (Mini 001 = 50mA 010 = 100mA 011 = 150mA 100 = 200mA 101 = 250mA 110 = 300mA	010 = 100mA								
BBstVSet [4:0]	Disabled.	Linear Scale, V V	-	-	lly latched and	can change onl	y when Buck-	Boost is		
BBstRip Red	Buck-Boost F Leave set to	Ripple Reductio	n							
BBstAct Dsc	0 = Actively c	Buck-Boost Active Discharge Control 0 = Actively discharged only in Hard-Reset 1 = Actively discharged in Hard-Reset or Enable Low								
BBstPas Dsc	Buck-Boost Passive Discharge Control 0 = Passively discharged only in Hard-Reset 1 = Passively discharged in Hard-Reset or Enable Low									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 130. 0x70 – BBst_Config_Write (continued)

BBstMd	Buck-Boost EMI Reduction 0 = Damping enabled 1 = Damping disabled
BBstInd	Buck-Boost Inductance select 0 = Inductance is 4.7µH 1 = Inductance is 3.3µH
BBstEn [1:0]	Buck-Boost Enable Configuration (effective only when BBstSeq[2:0] == 111) 00 = Disabled 01 = Enabled 10 = Controlled by MPC_Config_Write command 11 = RESERVED

Table 131. BBst_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x70)	0	1	1	1	0	0	0	0

Table 132. 0x71 – BBst_Config_Read

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0x71)	0	1	1	1	0	0	0	1

Table 133. BBst_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0				
APResponse (0x71)	0	1	1	1	0	0	0	1				
APDataln0	ClkDiv Ena		ClkDivSet[6:0]									
APDataIn1	—	—	BBstlSet[2:0]									
APDataln2	—	_	— — BBstVSet[4:0]									
APDataln3	—	_	BBstActDsc	BBstPasDsc	BBstMd	BBstInd	BBstE	in[1:0]				
APDataIn4	—	_	—	—	—		BBstSeq[2:0]					
BBstSeq [2:0]	000 = Disa 001 = RES 010 = Enab 011 = Enab 100 = Enab 101 = RES 110 = RES	bled ERVED bled at 0% of bled at 25% c bled at 50% c ERVED ERVED	of Boot/ POR Pro of Boot/ POR Pr	d only) cess Delay Cont ocess Delay Cor ocess Delay Cor 00% of Boot/PC	ntrol ntrol	ay Control						

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Haptic Configuration Commands

Table 134. 0xA0 – Hpt_Config_Write0

MODE	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xA0)	1	0	1	0	0	0	0	0			
APDataOut0	_	_	_	_	EmfEn	HptSel	AlcMod	ZccHysEn			
APDataOut1			1	IniGs	s[7:0]						
APDataOut2	ZccSlow En	_	_	FltrCntrEn		IniGs	s[11:8]				
APDataOut3	_	IniDly[4:0]									
APDataOut4	_	- IniGssRes Dis WidWdw[4:0]									
APDataOut5	_	BrkLpGain[1:0] NarWdw[3:0]									
EmfEn		-									
HptSel	Haptic Mode Can also be s 0 = ERM Mod 1 = LRA Mod	set using opco de	de 0xAD.								
AlcMod		vel Compensa set using opco	tion (ALC) Cor de 0xAD.	ntrol							
ZccHysEn		set using opco	Hysteresis Cor de 0xAD	ntrol							
IniGss [11:0]	Can also be s	Back EMF Initial Guess Can also be set using opcode 0xAE. Initial estimate for BEMF frequency = ((25.6MHz/64) / IniGss[11:0])									
ZccSlowEn	Can also be s 0 = Zero-cros	set using opco	tor operates in		tronger antialia	asing filtering.					

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 134. 0xA0 – Hpt_Config_Write0 (continued)

FltrCntrEn	Zero-Crossing Event Capturing Filter Enable Can also be set using opcode 0xBA 0 = Zero-crossing measured using single comparator/transition. 1 = Zero-crossing measured using an up/down counter (samples at 25.6MHz). Samples the output of the comparator for the whole duration of the enabled window (wide, narrow, or braking). The counter starts at zero (mid-code) and will end at a positive or negative code depending on whether the average zero-crossing event occurs before or after than the expected time. The closer the zero-crossing is on average to the expected time, the closer to zero code returned at the end of the window will be. Phase error (in 25.6MHz period units) can be calculated by dividing the resulting code at the end of the window by 2. The usage of the up/down counter enables filtering/noise rejection that could otherwise cause a systematic shift in the phase error detected.
IniDly[4:0]	Number of sine wave periods to be skipped before (re)starting BEMF measurement after: Start of vibration pattern. Change of output polarity (e.g., braking) Programmed percentage output amplitude (w.r.t. V _{FS}) becomes again higher than EmfSkipTh[6:0] after having previously gone below it. Can also be set using Opcode 0xAF.
IniGssResDis	Disable Initial Guess Restore 0 = Haptic driver uses IniGss[11:0] as the driving frequency after the end of BrkCyc[4:0] sinewave half periods. 1 = Haptic driver does not use IniGss[11:0] as the driving frequency after the end of BrkCyc[4:0] sine wave half periods. Can also be set using opcode 0xB0.
WidWdw [4:0]	Wide window duration for BEMF zero-crossing detection LSB =1/32 nd of currently imposed sinewave period. Can also be set using Opcode 0xB0
BrkLpGain [1:0]	Braking Window Gain Sets gain by which the phase delay found by the zero-crossing comparator is multiplied to calculate the shift for the new sine wave half period with respect to the previously imposed sine wave. This value is used when the braking window is active. Can also be set using opcode 0xB0. 00 = 1 01 = 1/2 10 = 1/4 11 = 1/8
NarWdw [3:0]	Narrow window duration for BEMF zero-crossing detection LSB =1/32 nd of currently imposed sinewave period. Can also be set using Opcode 0xB0

Table 135. Hpt_Config_Write0 Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xA0)	1	0	1	0	0	0	0	0

Table 136. 0xA1 – Hpt_Config_Read0

MODE	Read							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0xA1)	1	0	1	0	0	0	0	1

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 137. Hpt_Config_Read0 Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0			
APResponse (0xA1)	1	0	1	0	0	0	0	1			
APDataIn0	—	—	—	—	EmfEn	HptSel	AlcMod	ZccHysEn			
APDataIn1				IniGss[7:0]							
APDataln2	ZccSlow En	_	—	FltrCntrEn		IniGss	[11:8]				
APDataIn3	—	—	—			IniDly[4:0]					
APDataIn4	—	_	IniGssRes Dis	WidWdw[4:0]							
APDataIn5	_	_	BrkLpG	ain[1:0]		NarWo	lw[3:0]				

Table 138. 0xA2 – Hpt_Config_Write1

MODE	Write												
BIT	B7	B6	B5	B4	B3	B2	B1	B0					
APCmdOut (0xA2)	1	0	1	0	0	0	1	0					
APDataOut0			BrkCyc[4:0]			EmfSkipCyc[2:0)]					
APDataOut1		BlankWdw[2:0] BrkWdw[4:0]											
APDataOut2	_	— — — — — BlankWdw[5:3]											
APDataOut3				Hpt	:Vfs[7:0]								
APDataOut4				ETRG	DdAmp[7:0]								
APDataOut5				ETRG	OdDur [7:0]								
BrkCyc[4:0]	driving pola BrkWdw[4:0	Sets the number of consecutive sine wave half periods during which active braking is applied after a change in driving polarity. During these half periods, the gain used becomes BrkLpGain[1:0], the window duration becomes BrkWdw[4:0], and the effects of IniDly[4:0], EmfSkipCyc[2:0], and NarCntLck[5:0] are masked. Can also be set using opcode 0xB1.											
EmfSkipCyc [2:0]	detection co			nalf periods dur	ing which BEM	IF detection is s	kipped after a E	BEMF					
BlankWdw [5:0]	braking win AutoBrkPea	dows. The bl	anking window nd the driver is	duration cannot	t exceed 1/64 th	to exiting the w of the current s LSB = 128/25.	sine wave perio						
BrkWdw[4:0]		ndow duratior e set using op		-crossing detec	tion. LSB = 1/3	32 nd of current s	sine wave perio	d.					
HptVfs[7:0]	will be the r		veen the value			itput amplitude i nd the current S							
ETRGOd Amp[7:0]	MSB repres		n of the amplitud		of V _{FS} (ETRG	6 mode). LSB =	0.78%V _{FS} . Not	e that the					
ETRGOdDur [7:0]			rdrive period. LS pcode 0xB3. (ET										

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 139. Hpt_Config_Write1 Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xA2)	1	0	1	0	0	0	1	0

Table 140. 0xA3 – Hpt_Config_Read1

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0xA3)	1	0	1	0	0	0	1	1

Table 141. Hpt_Config_Read1 Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APResponse (0xA3)	1	0	1	0	0	0	1	1	
APDataIn0			BrkCyc[4:0]			E	EmfSkipCyc[2:0)]	
APDataIn1		BlankWdw[2:0]				BrkWdw[4:0]			
APDataln2	—	—	_	—	—		BlankWdw[5:3]		
APDataln3				HptVf	s[7:0]				
APDataIn4		ETRGOdAmp[7:0]							
APDataIn5		ETRGOdDur [7:0]							

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

MODE	Write											
BIT	B7	B6	B5	B4	B3	B2	B1	B0				
APCmdOut (0xA4)	1	0	1	0	0	1	0	0				
APDataOut0			1	ETRG	ActAmp[7:0]		1	1				
APDataOut1				ETRG	ActDur[7:0]							
APDataOut2		ETRGBrkAmp[7:0]										
APDataOut3				ETRG	BrkAmp[7:0]							
APDataOut4	_		NarLpGain[2:0)]	_		WidLpGain[2:0)]				
APDataOut5	_	_			NarCnt	Lck[5:0]						
ETRGAct Amp[7:0]		itude of the no	ormal drive perio pcode 0xB3.	od as a percent	tage of V _{FS} (ET	RG mode). LS	B = 0.78%V _{FS}	plus sign bit.				
ETRGAct Dur[7:0]		ion of the nor be set using o	mal drive period pcode 0xB3.	I. LSB = 10ms	(ETRG mode)							
ETRGBrk Amp[7:0]	process w	ots amplitude of the braking period as a percentage of V _{FS} (ETRG mode). Triggers the automatic braking because with a maximum braking time of ETRGBrkDur[7:0]. LSB = 0.78%V _{FS} plus sign bit. Can also be set using code 0xB3.										
ETRGBrk Dur[7:0]		ion of the bra	king period. LSE pcode 0xB3.	3 = 5ms (ETRO	G mode)							
NarLpGain [2:0]	for the new	w sinewave ha ndow is active	bhase delay fou alf period with re . Can also be se	espect to the pr	eviously impose							
WidLpGain [2:0]	the new si	newave half p active. Can a	phase delay fou period with resp lso be set using	ect to the previ	ously imposed s							
NarCntLck [5:0]	fall within	0 = 1/64										

Table 142. 0xA4— Hpt_Config_Write2

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 143. Hpt_Config_Write2 Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xA4)	1	0	1	0	0	1	0	0

Table 144. 0xA5 – Hpt_Config_Read2

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	В0			
APCmdOut (0xA5)	1	0	1	0	0	1	0	1			

Table 145. Hpt_Config_Read2 Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APResponse (0xA5)	1	0	1	0	0	1	0	1		
APDataIn0		ETRGActAmp[7:0]								
APDataIn1		ETRGActDur[7:0]								
APDataln2				ETRGE	BrkAmp[7:0]					
APDataln3				ETRGE	BrkAmp[7:0]					
APDataIn4	_	— NarLpGain[2:0] — WidLpGain[2:0]								
APDataIn5	— — NarCntLck[5:0]									

Table 146. 0xA6 – Hpt_SYS_Threshold_Config_Write

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xA6)	1	1 0 1 0 0 1 1								
APDataOut0		HptSysUVLO[7:0]								
HptSys UVLO[7:0]	Sets the SYS (HptLock = 1)	Haptic SYS UVLO Threshold Sets the SYS undervoltage threshold. If V_{SYS} falls below this UVLO threshold, the haptic driver is locked (HptLock = 1) and System-Error[7:0] = 0x25 is issued. See Opcode 0xA8 for details on restarting the haptic driver. SB = 5.5V/255								

Table 147. Hpt_SYS_threshold_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xA6)	1	0	1	0	0	1	1	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 148. 0xA7—Hpt_SYS_threshold_Config_Read

MODE	Read	Read									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xA7)	1	0	1	0	0	1	1	1			

Table 149. Hpt_SYS_threshold_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APResponse (0xA7)	1	0	1	0	0	1	1	1	
APDataIn0		HptSysUVLO[7:0]							

Table 150. 0xA8 – Hpt_Lock_Config_Write

MODE	Write								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0xA8)	1	0	1	0	1	0	0	0	
APDataOut0	—	—	_	_	_	_	—	HptLock	
HptLock	When a fault 0 to opcode (0 = Unlock H	Haptic Driver Lock When a fault condition causes the haptic driver to lock, this bit can only be cleared by manually writing HptLock = 0 to opcode 0xA8. The haptic driver output will be off while HptLock = 1. 0 = Unlock Haptic Driver 1 = Lock Haptic Driver							

Table 151. Hpt_Lock_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xA8)	1	0	1	0	1	0	0	0

Table 152. 0xA9 – Hpt_Lock_Config_Read

MODE	Read	Read									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xA9)	1	0	1	0	1	0	0	1			

Table 153. Hpt_Lock_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xA9)	1	0	1	0	1	0	0	1
APDataIn0	_	—	—	—	—			HptLock

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 154. 0xAA – Hpt_EMF_Threshold_Config_Write

MODE	Write								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0xAA)	1	0	1	0	1	0	1	0	
APDataOut0	_				EmfSkipTh[6:0]				
EMFSkipTh [6:0]	Percentage c	Back EMF Skip Threshold Percentage of the full-scale output amplitude under which to skip the BEMF measurement as the returned BEMF would be too small to measure in these cases. LSB = 0.78%V _{FS} .							

Table 155. Hpt_EMF_Threshold_Config_Write Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xAA)	1	0	1	0	1	0	1	0

Table 156. 0xAB – Hpt_EMF_Threshold_Config_Read

MODE	Read	Read								
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xAB)	1	0	1	0	1	0	1	1		

Table 157. HPT_EMF_Threshold_Config_Read Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APResponse (0xAB)	1	0	1	0	1	0	1	1		
APDataIn0		_	_			EmfSki	oTh[6:0]	1		

Table 158. 0xAC—HPT_Autotune

MODE	Launch	Launch								
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xAC)	1	0	1	0	1	1	0	0		

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 159. HPT_Autotune Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APResponse (0xAC)	1	0	1	0	1	1	0	0		
APDataln0		Result[7:0]								
APDataln1		BEMFPeriod[7:0]								
APDataln2	_	_	—	—		BEMFPe	riod[11:8]			
Result [7:0]	0x00 = Auto- 0x01 = Auto-	tune done, BE tune failed.	MFPeriod[11:0]] available.						
BEMFPeriod [11:0]	Resonant frequency resolved by autotune function = ((25.6MHz / 64) / BEMF_freq)									

Table 160. 0xAD— HPT_SetMode

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xAD)	1	0	1	0	1	1	0	1		
APDataOut0	—	—	—	—	EmfEn	HptSel	AlcMod	ZccHysEn		

Table 161. HPT_SetMode Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xAD)	1	0	1	0	1	1	0	1

Table 162. 0xAE— HPT_SetInitialGuess

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xAE)	1	0	1	0	1	1	1	0			
APDataOut0				IniGs	s[7:0]						
APDataOut1	— — — IniGss[11:8]										

Table 163. HPT_SetInitialGuess Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xAE)	1	0	1	0	1	1	1	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 164. 0xAF— HPT_SetInitialDelay

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xAF)	1	0	1	0	1	1	1	1		
APDataOut0	—	—	—	IniDly[4:0]						

Table 165. HPT_SetInitialDelay Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xAF)	1	0	1	0	1	1	1	1

Table 166. 0xB0—HPT_SetWindow

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0xB0)	1	0	1	1	0	0	0	0
APDataOut0	—	_	IniGssRes Dis	WidWdw[4:0]				
APDataOut1	—	—	BrkLpG	Gain[1:0] NarWdw[3:0]				

Table 167. HPT_SetWindow Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB0)	1	0	1	1	0	0	0	0

Table 168. 0xB1 – HPT_SetBackEMFCycle

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xB1)	1	0	1	1	0	0	0	1			
APDataOut0		BrkCyc[4:0] EmfSkipCyc[2:0]									

Table 169. HPT_SetBackEMFCycle Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0xB1)	1	0	1	1	0	0	0	1

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 170. 0xB2—HPT_SetFullScale

MODE	Write—	Write—									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xB2)	1	0	1	1	0	0	1	0			
APDataOut0		HptVfs[7:0]									

Table 171. HPT_SetFullScale Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB2)	1	0	1	1	0	0	1	0

Table 172. 0xB3—Hpt_SetHptPattern

MODE	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xB3)	1	0	1	1	0	0	1	1		
APDataOut0	ETRGOdAmp[7:0]									
APDataOut1		ETRGOdDur[7:0]								
APDataOut2				ETRGAC	tAmp[7:0]					
APDataOut3				ETRGA	ctDur[7:0]					
APDataOut4		ETRGBrkAmp[7:0]								
APDataOut5		ETRGBrkDur[7:0]								

Table 173. Hpt_SetHptPattern Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB3)	1	0	1	1	0	0	1	1

Table 174. 0xB4—Hpt_SetGain

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0xB4)	1	0	1	1	0	1	0	0			
APDataOut0	—	1	NarLpGain[2:0]]	—		WidLpGain[2:0]			

Table 175. Hpt_SetGain Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0xB4)	1	0	1	1	0	1	0	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 176. 0xB5—HPT_SetLock

MODE	Write	Write										
BIT	B7	B6	B5	B4	B3	B2	B1	В0				
APCmdOut (0xB5)	1	0	1	1	0	1	0	1				
APDataOut0	_	— — NarCntLck[5:0]										

Table 177. Hpt_SetLock Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB5)	1	0	1	1	0	1	0	1

Table 178. 0xB6—Hpt_ReadResonanceFrequency

MODE	Read	ead								
BIT	B7	B6	B5	B4	B3	B2	B1	B0		
APCmdOut (0xB6)	1	0	1	1	0	1	1	0		

Table 179. Hpt_ReadResonanceFrequency Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB6)	1	0	1	1	0	1	1	0
APDataln0				BEMFP	eriod[7:0]			
APDataIn1	—	—	—	—	BEMFPeriod[11:8]			

Table 180. 0xB7—Hpt_SetTimeout

MODE	Write								
BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APCmdOut (0xB7)	1	0	1	1	0	1	1	1	
APDataOut0	—	—	HptDrvTmo[5:0]						
		0xA8 for detail ed (HptLock = sabled	0	the haptic driv Error[7:0] = 0x(olution. If timed	out is reached,	the haptic	

Table 181. Hpt_SetTimeout Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB7)	1	0	1	1	0	1	1	1

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 182. 0xB8—Hpt_GetTimeout

MODE	Read	lead									
BIT	B7	B6	B5	B4	B3	B2	B1	В0			
APCmdOut (0xB8)	1	0	1	1	1	0	0	0			

Table 183. Hpt_GetTimeout Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0xB8)	1	0	1	1	1	0	0	0
APDataIn0	—	_	HptDrvTmo[5:0]					

Table 184. 0xB9—Hpt_SetBlankingWindow

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	В0			
APCmdOut (0xB9)	1	0	1	1	1	0	0	1			
APDataOut0		BlankWdw[2:0]		BrkWdw[4:0]							
APDataOut1	—	—	_	—	—		BlankWdw[5:3]				

Table 185. Hpt_SetBlankingWindow Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0xB9)	1	0	1	1	1	0	0	1

Table 186. 0xBA—Hpt_SetZCC

MODE	Write							
BIT	B7	B6	B5	B4	B3	B2	B1	B0
APCmdOut (0xBA)	1	0	1	1	1	0	1	0
APDataOut0	—	—	—	—	—	—	ZccSlowEn	FltrCntrEn

Table 187. Hpt_SetZCC Response

BIT	B7	B6	B5	B4	B3	B2	B1	В0
APResponse (0xBA)	1	0	1	1	1	0	1	0

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Power and Reset Commands

Table 188. 0x80—PowerOff_Command

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	B0			
APCmdOut (0x80)	1	0	0	0	0	0	0	0			
APDataOut0		PwrOffCmd[7:0]									
PwrOffCmd [7:0]	Writing 0xB2	Power-Off Command Writing 0xB2 to this register will immediately place the part in the OFF state. All other codes = Do nothing									

Table 189. PowerOff_Command Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APResponse (0x80)	1	0	0	0	0	0	0	0	
APDataln0	_	_					_	PwrOffRes ponse	
PwrOffResp onse	0 = Password	Power-Off Response 0 = Password good, preparing Off mode 1 = Password is wrong							

Table 190. 0x81 – SoftReset_Command

MODE	Write								
BIT	B7 B6 B5 B4 B3 B2 B1								
APCmdOut (0x81)	1	1 0 0 0 0 0 0 1							
APDataOut0		SoftResetCmd[7:0]							
SoftReset Cmd [7:0]	Writing 0xB3 line will be as	Soft-Reset Command Writing 0xB3 to this register will force a Soft-Reset, all registers will be reset to their default values and the RST line will be asserted. All other codes = Do nothing							

Table 191. SoftReset_Command Response

BIT	B7	B6	B5	B4	В3	B2	B1	В0	
APResponse (0x81)	1	0	0	0	0	0	0	1	
APDataln0	_					_	SoftReset Response		
SoftReset Response	0 = Password	Soft-Reset Response 0 = Password good, preparing Soft-Reset 1 = Password is wrong							

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 192. 0x82—Hard-Reset_Command

MODE	Write									
BIT	B7 B6 B5 B4 B3 B2 B1 B0									
APCmdOut (0x82)	1	1 0 0 0 0 0 1								
APDataOut0	HardResetCmd [7:0]									
HardReset Cmd[7:0]	Writing 0xB4 will perform a	Hard-Reset Command Writing 0xB4 to this register will force the system to perform a Hard-Reset. All supplies will turn Off and system will perform a full power-on sequence. All other codes = Do nothing								

Table 193. Hard-Reset_Command Response

BIT	B7	B6	B5	B4	В3	B2	B1	В0	
APResponse (0x82)	1	0	0	0	0	0	1	0	
APDataIn0	_	_				_	HardReset Response		
HardReset Response	0 = Password	Hard-Reset Response 0 = Password good, preparing Hard-Reset 1 = Password is wrong							

Table 194. 0x83—StayOn_Command

MODE	Write	Write									
BIT	B7	B6	B5	B4	B3	B2	B1	В0			
APCmdOut (0x83)	1	0	0	0	0	0	1	1			
APDataOut0	_	St									
StayOn	condition. Th	This bit must be set within 5s of power-on to prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being set. 0 = Shut down 5s after RST goes HIGH									

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 195. 0x83—StayOn_Command Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0
APResponse (0x83)	1	0	0	0	0	0	1	1

Table 196. 0x84—PowerOff_Command_Delay

MODE	Write								
BIT	B7 B6 B5 B4 B3 B2 B1								
APCmdOut (0x84)	1	0	0	0	0	1	0	0	
APDataOut0		PwrOffDlyCmd[7:0]							
PwrOffDly Cmd [7:0]	Writing 0xB2	Power-Off Command with Delay Writing 0xB2 to this register will place the part in the Off state after a 30ms delay. All other codes = Do nothing							

Table 197. PowerOff_Command_Delay Response

BIT	B7	B6	B5	B4	B3	B2	B1	B0	
APResponse (0x84)	1	0	0	0	0	1	0	0	
APDataln0	_	_	_	_	_	_	_	PwrOffDly Response	
PwrOffDly Response	0 = Password	Power-Off with Delay Response 0 = Password good, preparing Off mode 1 = Password is wrong							

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Fuel Gauge I²C Registers

Register Summary

All registers must be written and read as 16-bit words; 8-bit writes cause no effect. Any bits marked X (don't care) or read only must be written with the rest of the register, but the value written is ignored by the IC. The values read from don't care bits are undefined. Calculate the register's value by multiplying the 16-bit word by the register's LSb value, as shown in Table 198.

VCELL Register (0x02)

The MAX20353 measures VCELL between the V_{DD} and GND pins. VCELL is the average of four ADC conversions. The value updates every 250ms in active mode and every 45s in hibernate mode.

SOC Register (0x04)

The ICs calculate SOC using the ModelGauge algorithm. This register automatically adapts to variation in battery size since ModelGauge naturally recognizes relative SOC. The upper byte least-significant bit has units of 1%. The lower byte provides additional resolution.

The first update is available approximately 1s after POR of the IC. Subsequent updates occur at variable intervals depending on application conditions.

MODE Register (0x06)

The MODE register allows the system processor to send special commands to the IC (see Figure 16).

- **Quick-Start** generates a first estimate of OCV and SOC based on the immediate cell voltage. Use with caution; see the *Quick-Start* section.
- **EnSleep** enables sleep mode. See the <u>Sleep Mode</u> section.
- **HibStat** indicates when the IC is in hibernate mode (read only).

VERSION Register (0x08)

The value of this read-only register indicates the production version of the IC.

ADDRESS	REGISTER NAME	16-BIT LSb	DESCRIPTION	READ/WRITE	DEFAULT
0x02	VCELL	78.125µV/cell	ADC measurement of VCELL.	R	—
0x04	SOC	1%/256	Battery state of charge.	R	—
0x06	MODE	_	Initiates quick-start, reports hibernate mode, and enables sleep mode.	W	0x0000
0x08	VERSION	—	IC production version.	R	0x001_
0x0A	HIBRT	—	Controls thresholds for entering and exiting hibernate mode.	R/W	0x8030
0x0C	CONFIG	_	Compensation to optimize performance, sleep mode, alert indicators, and configuration.	R/W	0x971C
0x14	VALRT	_	Configures the VCELL range outside of which alerts are generated.	R/W	0x00FF
0x16	CRATE	0.208%/hr	Approximate charge or discharge rate of the battery.	R	_
0x18	VRESET/ID	_	Configures VCELL threshold below which the IC resets itself, ID is a one-time factory- programmable identifier.	R/W	0x96
0x1A	STATUS	_	Indicates overvoltage, undervoltage, SOC change, SOC low, and reset alerts.	R/W	0x01
0x40 to 0x7F	TABLE		Configures battery parameters.	W	_
0xFE	CMD		Sends POR command.	R/W	0xFFFF

Table 198. Register Summary

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

HIBRT Register (0x0A)

To disable hibernate mode, set HIBRT = 0x0000. To always use hibernate mode, set HIBRT = 0xFFFF (see Figure 17).

- ActThr (active threshold): If at any ADC sample |OCV-CELL| is greater than ActThr, the IC exits hibernate mode. 1 LSb = 1.25mV.
- HibThr (hibernate threshold). If the absolute value of CRATE is less than HibThr for longer than 6min, the IC enters hibernate mode. 1 LSb = 0.208%/hr.

CONFIG Register (0x0C)

See Figure 18

- **RCOMP** is an 8-bit value that can be adjusted to optimize IC performance for different lithium chemistries or different operating temperatures. Contact Maxim for instructions for optimization. The POR value of RCOMP is 0x97.
- SLEEP forces the IC in or out of sleep mode if Mode.EnSleep is set. Writing 1 forces the IC to enter

sleep mode, and 0 forces the IC to exit. The POR value of SLEEP is 0.

- ALSC (SOC change alert) enables alerting when SOC changes by at least 1%. Each alert remains until STATUS.SC is cleared, after which the alert automatically clears until SOC again changes by 1%. Do not use this alert to accumulate changes in SOC.
- ALRT (alert status bit) is set by the IC when an alert occurs. When this bit is set, the ALRT pin asserts low. Clear this bit to service and deassert the ALRT pin. The power-up default value for ALRT is 0. The STATUS register specifies why the ALRT pin was asserted.
- ATHD (empty alert threshold) sets the SOC threshold, where an interrupt is generated on the ALRT pin and can be programmed from 1% up to 32%. The value is (32 ATHD)% (e.g., 00000b → 32%, 00001b → 31%, 00010b → 30%, 11111b → 1%). The POR value of ATHD is 0x1C, or 4%. The alert only occurs on a falling edge past this threshold.

Figure 16. MODE Register Format

Figure 17. HIBRT Register Format

	MSB (RCOMP)—ADDRESS 0x0C									LSB	-ADD	RESS	0x0D		
RCOMP 7	RCOMP 6	RCOMP 5	RCOMP 4	RCOMP 3	RCOMP 2	RCOMP 1	RCOMP 0	SLEEP	ALSC	ALRT	ATHD 4	ATHD 3	ATHD 2	ATHD 1	ATHD 0
MSb							LSb	MSb							LSb

Figure 18. CONFIG Register Format

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

VALRT Register (0x14)

This register is divided into two thresholds: Voltage alert maximum (VALRT.MAX) and minimum (VALRT. MIN). Both registers have 1 LSb = 20mV. The IC alerts while VCELL > VALRT.MAX or VCELL < VALRT.MIN (see Figure 19).

CRATE Register (0x16)

The IC calculates an approximate value for the average SOC rate of change. 1 LSb = 0.208% per hour (not for conversion to ampere).

VRESET/ID Register (0x18)

See Figure 20.

• **ID** is an 8-bit read-only value that is one-time programmable at the factory, which can be used as an identifier to distinguish multiple cell types in production. Writes to these bits are ignored.

- VRESET[7:1] adjusts a fast analog comparator and a slower digital ADC threshold to detect battery removal and reinsertion. For captive batteries, set to 2.5V. For removable batteries, set to at least 300mV below the application's empty voltage, according to the desired reset threshold for your application. If the comparator is enabled, the IC resets 1ms after VCELL rises above the threshold. Otherwise, the IC resets 250ms after the VCELL register rises above the threshold.
- **Dis.** Set Dis = 1 to disable the analog comparator in hibernate mode to save approximately 0.5µA

Figure 19. VALRT Register Format

Figure 20. VRESET/ID Register Format

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

STATUS Register (0x1A)

An alert can indicate many different conditions. The STATUS register identifies which alert condition was met. Clear the corresponding bit after servicing the alert (see Figure 21).

Reset Indicator:

• **RI** (reset indicator) is set when the device powers up. Any time this bit is set, the IC is not configured, so the model should be loaded and the bit should be cleared.

Alert Descriptors:

These bits are set only when they cause an alert (e.g., if CONFIG.ALSC = 0, then SC is never set).

- **VH** (voltage high) is set when VCELL has been above ALRT.VALRTMAX.
- VL (voltage low) is set when VCELL has been below ALRT.VALRTMIN.
- **VR** (voltage reset) is set after the device has been reset regardless of EnVr.
- HD (SOC low) is set when SOC crosses the value in CONFIG.ATHD.
- SC (1% SOC change) is set when SOC changes by at least 1% if CONFIG.ALSC is set.

Enable or Disable VRESET Alert:

• EnVr (enable voltage reset alert) when set to 1 asserts the ALRT pin when a voltage-reset event occurs under the conditions described by the VRESET/ ID register.

TABLE Registers (0x40 to 0x7F)

Contact Maxim for details on how to configure these registers. The default value is appropriate for some Li+ batteries.

To unlock the TABLE registers, write 0x57 to address 0x3F, and 0x4A to address 0x3E. While TABLE is unlocked, no ModelGauge registers are updated, so relock as soon as possible by writing 0x00 to address 0x3F, and 0x00 to address 0x3E.

CMD Register (0xFE)

Writing a value of 0x5400 to this register causes the device to completely reset as if power had been removed (see the *Power-On Reset (POR)* section). The reset occurs when the last bit has been clocked in. The IC does not respond with an I^2C ACK after this command sequence.

Figure 21. STATUS Register Format

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 199. Haptic Driver Recommended Default Values

REGISTER BITS	BINARY SETTING	VALUE
EmfEn	1	BEMF detection enabled
HptSel	1	LRA
AlcMod	1	ALC enabled
ZccHysEn	0	ZCC Hysteresis Disabled
ZccSlowEn	0	Normal ZCC operation
FltrCntrEn	1	Improved noise rejection
IniGssResDis	0	Restore initial guess after braking
AutoBrkPeakMeas	0	Four points
AutoBrkFltrSatStop	0	Do not exit braking
AutoBrkMeasWdw	1000	40µs
AutoBrkMeasTh	01	5.0mV
AutoBrkDis	0	Automatic braking enabled
AutoBrkMeasEnd	00	1 BEMF detection below threshold
IniDly	00010	2 sine wave half periods skipped
WidWdw	00101	5/32 ^{nds} of current sine wave period
WidLpGain	011	1/8
NarWdw	0010	2/32 ^{nds} of current sine wave period
NarCntLck	000110	6 sine wave half periods
BrkLpGain	00	Gain = 1
NarLpGain	010	1/4
BlankWdw	001000	40µs
BrkWdw	01000	8/32 ^{nds} of current sine wave period
BrkCyc	11110	30 sine wave half periods
EmfSkipCyc	000	0 sine wave half periods

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 200. Haptic Driver Recommended Default Values

OPCODE	REGISTER	VALUE
	APDataOut0	0x0E
	APDataOut1	User Value
List Config Muited (0)(A0)	APDataOut0	0x1X (X = User Value)
Hpt_Config_Write0 (0xA0)	APDataOut3	0x02
	APDataOut4	0x05
	APDataOut5	0x02
	APDataOut0	0xF0
	APDataOut1	0x08
lpt_Config_Write1 (0xA2)	APDataOut2	0x01
	APDataOut3	User Value
	APDataOut4	User Value
	APDataOut5	User Value
	APDataOut0	User Value
	APDataOut1	User Value
Hat Config Mrito2 (0xA4)	APDataOut2	User Value
Hpt_Config_Write2 (0xA4)	APDataOut3	User Value
	APDataOut4	0x23
	APDataOut5	0x06

Table 201. Register Bit Default Values

	DEFAULT VALUE		
	MAX20353A	MAX20353B	MAX20353C
PFN2PUD_CFG*	Hi-Z	Hi-Z	PU/PD Connected
PFN1PUD_CFG*	PU/PD Connected	PU/PD Connected	PU/PD Connected
WriteProtect	Disabled	Disabled	Disabled
ILimBlank	Disabled	10ms	Disabled
ILimCntl	500mA	300mA	500mA
MtChgTmr	Omin	0min	Omin
FChgTmr	600min	150min	600min
PChgTmr	30min	60min	30min
TShdnTmo	10s	5s	5s
ChgAutoRe	Auto-Restart	Auto-Restart	Auto-Restart
VPChg	3.15V	3V	3.15V
IPChg	10% I _{FCHG}	10% I _{FCHG}	5% I _{FCHG}
ChgDone	10% I _{FCHG}	5% I _{FCHG}	5% I _{FCHG}
ChgEn	Disabled	Enabled	Disabled
ChgAutoStp	Enabled	Enabled	Enabled
BatReChg	200mV	170mV	220mV

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 201. Register Bit Default Values (continued)

	DEFAULT VALUE		
	MAX20353A	MAX20353B	MAX20353C
BatReg	4.35V	4.35V	4.35V
ColdLim	1397.65mV	1327.06mV	1037.65mV
HotLim	529.41mV	416.47mV	240mV
BstlSet	425mA	275mA	125mA
BstlAdptEn	Enabled	Enabled	Enabled
BstFastStrt	50ms	100ms	100ms
BstFetScale	Disabled	Disabled	Disabled
BstVSet	20V	14.5V	5V
Buck1FetScale	Disabled	Disabled	Disabled
Buck2FetScale	Disabled	Enabled	Disabled
BstSeq	BstEn After 100%	BstEn After 100%	BoostEn After 100%
BstEn	Disabled	Disabled	MPC Reg Defined
Buck1VSet	1.8V	1.825V	1.825V
Buck1IZCSet	30mA	30mA	30mA
Buck2VSet	0.9V	2.00V	3.20V
Buck2IZCSet	10mA	30mA	10mA
Buck2ISet	150mA	75mA	150mA
Buck1ISet	150mA	150mA	150mA
BootDly**	120ms	80ms	120ms
Buck2SftStrt	50ms Soft-Start	25ms Soft-Start	50ms Soft-Start
Buck1SftStrt	50ms Soft-Start	25ms Soft-Start	50ms Soft-Start
Buck2En	Disabled	Enabled	Disabled
Buck1En	Enabled	Enabled	Enabled
LDO1Md	LDO	Load Switch	Load Switch
LDO1En	Disabled	Disabled	Direct Reg Control
LDO2Md	LDO	LDO	LDO
LDO2En	Disabled	Disabled	Direct Reg Control
PassDiscEna***	Enabled	Enabled	Enabled
LDO2VSet	3.2V	3.6V	3.2V
StayOn	Enabled	Enabled	Enabled
SFOUTVSet	3.3V	5.0V	3.3V
LDO1VSet	1.2V	1.825V	1.8V
SysMinVIt	3.6V	3.6V	3.6V
SFOUTEn	CHGIN	Disabled	Disabled
CPVSet	6.6V	5.0V	5.0V
CPEn	Disabled	Disabled	Disabled
CPSeq	CPEn After 100%	Disabled	CPEn After 100%

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 201. Register Bit Default Values (continued)

	DEFAULT VALUE		
	MAX20353A	MAX20353B	MAX20353C
PwrRstCfg	0b0110	0b0111	0b1000
Buck2Seq	Buck2En After 100%	Buck2En After 100%	Buck2En After 100%
Buck1Seq	Buck1En After 100%	0%	0%
BBstEn	Disabled	Disabled	Disabled
LDO2Seq	LDO2En After 100%	LDO2En After 100%	LDO2En After 100%
LDO1Seq	LDO1En After 100%	LDO1En After 100%	LDO1En After 100%
ThmEn	Disabled	Enabled	Enabled
BBstVset	5V	3.8V	4.5V
BBstlSet	100mA	100mA	50mA
BatOcThr	1000mA	400mA	1000mA
BBstRipRed	Lower Ripple	Lower Ripple	Lower Ripple
BBstInd	4.7µH	4.7µH	4.7µH
BBstSeq	BBstEn After 100%	BBstEn After 100%	BBstEn After 100%
EmfEn	Disabled	Enabled	Enabled
HptSel	ERM	ERM	LRA
AlcMod	Enabled	Disabled	Enabled
HptSysUVLO	3V	3V	3.21V
HptDrvTmo	10s	Disabled	10s
ILimMax****	1000mA	450mA	1000mA
T _{CHGIN_SHDN}	100°C	100°C	100°C

*See Table 202

**Sets t_{RST} time. See Figure 3

***If enabled, passive discharge is enabled for all rails in off mode.

****Current limit during t_{ILimBlank}

Table 202. PFN Connections and Logic Configurations

FUNCTION		DEVICE CONFIGURATION	
FUNCTION	MAX20353A	MAX20353B	MAX20353C
PFN1	Pullup	Pullup	Pullup
PFN2	Hi-Z	Hi-Z	Pullup
ON STATE LOGIC LEVELS*	V _{PFN_IH} , V _{PFN_IL}	V _{PFN_IH} , V _{PFN_IL}	V _{PFN_IH} , V _{PFN_IL}

*Values in this row reference EC table parameters. In OFF mode, V_{PFN_IH} and V_{PFN_IL} logic levels always apply.

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

REGISTER	NAME	DEFAULT VALUE		
		MAX20353A	MAX20353B	MAX20353C
0x00	HardwareID	0x03	0x03	0x03
0x01	FirmwareID	0x02	0x02	0x02
0x0B	SystemError	0x00	0x00	0x00
0x0C	IntMask0	0x00	0x00	0x00
0x0D	IntMask1	0x00	0x00	0x00
0x0E	IntMask2	0x40	0x40	0x40
0x0F	APDataOut0	0x00	0x00	0x00
0x10	APDataOut1	0x00	0x00	0x00
0x11	APDataOut2	0x00	0x00	0x00
0x12	APDataOut3	0x00	0x00	0x00
0x13	APDataOut4	0x00	0x00	0x00
0x14	APDataOut5	0x00	0x00	0x00
0x15	APDataOut6	0x00	0x00	0x00
0x17	APCmdOut	0x00	0x00	0x00
0x18	APResponse	0x00	0x00	0x00
0x19	APDataIn0	0x00	0x00	0x00
0x1A	APDataIn1	0x00	0x00	0x00
0x1B	APDataIn2	0x00	0x00	0x00
0x1C	APDataIn3	0x00	0x00	0x00
0x1D	APDataIn4	0x00	0x00	0x00
0x1E	APDataIn5	0x00	0x00	0x00
0x20	LDODirect	0x00	0x00	0x00
0x21	MPCDirectWrite	0x00	0x00	0x00
0x28	HptRAMAddr	0x00	0x00	0x00
0x29	HptRAMDataH	0x4A	0x4A	0x4A
0x2A	HptRAMDataM	0x74	0x74	0x74
0x2B	HptRAMDataL	0x63	0x63	0x63
0x2C	LEDStepDirect	0x00	0x00	0x00
0x2D	LED0Direct	0x00	0x00	0x00
0x2E	LED1Direct	0x00	0x00	0x00
0x2F	LED2Direct	0x00	0x00	0x00
0x30	HptDirect0	0x04	0x04	0x04
0x31	HptDirect1	0x00	0x00	0x00
0x32	HptRTI2Camp	0x00	0x00	0x00
0x33	HptPatRAMAddr	0x00	0x00	0x00

Table 203. I²C Direct Register Default Values

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 204. Read Opcode Default Values

	DECISTED			
OPCODE	REGISTER	MAX20353A	MAX20353B	MAX20353C
	APDataIn0	0x00	0x00	0x00
	APDataIn1	0x00	0x00	0x00
GPIO_Config_Read (0x02)	APDataIn2	0x00	0x00	0x00
(0x02)	APDataIn3	0x00	0x00	0x00
	APDataIn4	0x00	0x00	0x00
GPIO_Control_Read (0x04)	APDataIn0	0x00	0x00	0x00
	APDataIn0	0x00	0x00	0x00
	APDataIn1	0x00	0x00	0x00
MPC_Config_Read	APDataIn2	0x00	0x00	0x00
(0x07)	APDataIn3	0x00	0x00	0x00
	APDataIn4	0x00	0x00	0x00
InputCurrent_Config_Read (0x11)	APDataIn0	0x06	0x1C	0x06
ThermalShutdown_Config_Read (0x12)	APDataIn0	0x03	0x03	0x03
	APDataIn0	0x0C	0x05	0x0C
Charger_Config_Read	APDataIn1	0x75	0x64	0x70
(0x15)	APDataln00x00APDataln10x00APDataln20x00APDataln30x00APDataln40x00APDataln40x00APDataln00x00APDataln10x00APDataln20x00APDataln30x00APDataln40x00APDataln10x00APDataln20x00APDataln30x00APDataln40x00APDataln50x00APDataln40x00APDataln00x06APDataln00x03APDataln00x03	0xF6	0xE6	0xF6
	APDataIn3	0x00	0x00	0x00
	APDataIn0	0xC6	0xBC	0x93
ChargerThermalLimits_Config_Read	APDataIn1	0xC6	0xBC	0x93
(0x17)	APDataIn2	0x4B	0x3B	0x22
	APDataIn3	0x4B	0x3B	0x22
	APDataIn0	0x00	0x00	0x00
	APDataIn1	0x00	0x00	0x00
ChargerThermalReg_ConfigRead (0x19)	APDataIn2	0x1F	0x1F	0x1F
(0/13)	APDataIn3	0x00	0x00	0x00
	APDataIn4	0x00	0x00	0x00
Charger_Control_Read (0x1B)	APDataIn0	0x00	0x03	0x02
Charger_JEITAHyst_ControlRead (0x1D)	APDataIn0	0x86	0x86	0x86
	APDataIn0	0x00	0x00	0x02
	APDataIn1	0x06	0x04	0x04
Bst_Config_Read (0x31)	APDataIn2	0x0D	0x07	0x01
	APDataIn3	0x3C	0x26	0x00
	APDataIn4	0x00	0x07	0x07

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 204. Read Opcode Default Values (continued)

OBCODE	DECISTED		DEFAULT VALUE	
OPCODE	REGISTER	MAX20353A	MAX20353B	MAX20353C
	APDataIn0	0x00	0x20	0x00
	APDataIn1	0xA8	0xAD	0xAD
Buck1_Config_Read (0x36)	APDataIn2	0x26	0x26	0x26
(0,00)	APDataIn3	0x01	0x01	0x01
	APDataIn4	0x07	0x02	0x07
	APDataIn0	0x00	0x22	0x00
	APDataIn1	0x82	0x9A	0xB2
Buck2_Config_Read (0x3B)	APDataIn2	0x06	0x23	0x06
	APDataIn3	0x00	0x01	0x00
	APDataIn4	0x07	0x07	0x07
	APDataIn0	0x00	0x00	0x00
LDO1_Config_Read (0x41)	APDataIn1	0x1C	0x35	0x34
(0,41)	APDataIn2	0x07	0x07	0x07
	APDataIn0	0x00	MAX20353A MAX20353B 0x00 0x20 0xA8 0xAD 0x26 0x26 0x01 0x01 0x07 0x02 0x00 0x22 0x00 0x22 0x00 0x22 0x00 0x23 0x00 0x01 0x07 0x07 0x00 0x01 0x00 0x01 0x00 0x01 0x00 0x00 0x1C 0x35 0x07 0x07	0x00
LDO2_Config_Read (0x43)	APDataIn1	0x17	0x1B	0x17
(0,+3)	APDataIn2	0x07	0x07	0x07
	APDataIn0	0x00	0x00	0x00
ChargePump_Config_Read (0x47)	APDataIn1	0x00	0x01	0x01
	APDataIn2	0x07	0x00	0x07
SFOUT_Config_Read (0x49)	APDataIn0	0x05	0x00	0x04
MONMux_Config_Read (0x51)	APDataIn0	0x00	0x00	0x00
	APDataIn0	0x00	0x00	0x00
	APDataIn1	0x02	0x02	0x01
BBst_Config_Read (0x71)	APDataIn2	0x19	0x0D	0x14
(0,7,1)	APDataIn3	0x50	0x50	0x50
	APDataIn4	0x07	0x07	0x07
	APDataIn0	0x02	0x08	0x0E
	APDataIn1	0xD0	0xD0	0xD0
Hpt_Config_Read0	APDataIn2	0x97	0x17	0x17
(0xA1)	APDataIn3	0x00	0x03	0x03
	APDataIn4	0x05	0x05	0x05
	APDataIn5	0x01	0x01	0x01

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Table 204. Read Opcode Default Values (continued)

000005	DEGIGTED		DEFAULT VALUE	
OPCODE	REGISTER	MAX20353A	MAX20353B	MAX20353C
	APDataIn0	0x01	0x01	0x01
	APDataIn1	0x00	0x00	0x00
Hpt_Config_Read1	APDataIn2	0x02	0x02	0x02
(0xA3)	APDataIn3	0x8B	0x8B	0x8B
	APDataIn4	0x7F	0x7F	0x7F
	APDataIn5	0x04	0x04	0x04
	APDataIn0	0xCC	0x4C	0x4C
	APDataIn1	0x32	0x32	0x32
Hpt_Config_Read2	APDataIn2	0xFF	0xFF	0xFF
(0xA5)	APDataIn3	0x04	0x04	0x04
	APDataIn4	0x24	0x24	0x24
	APDataIn5	0x06	0x06	0x06
Hpt_SYS_Threshold_Config_Read (0xA7)	APDataIn0	0x8B	0x8B	0x95
Hpt_Lock_Config_Read (0xA9)	APDataIn0	0x00	0x00	0x00
Hpt_EMF_Threshold_Config_Read (0xAB)	APDataIn0	0x19	0x19	0x19

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX20353AEWN+	-40°C to +85°C	56 WLP
MAX20353AEWN+T	-40°C to +85°C	56 WLP
MAX20353BEWN+	-40°C to +85°C	56 WLP
MAX20353BEWN+T	-40°C to +85°C	56 WLP
MAX20353CEWN+	-40°C to +85°C	56 WLP
MAX20353CEWN+T	-40°C to +85°C	56 WLP

+Denotes a lead (Pb)-free package/RoHS-compliant package. T = Tape and reel

Chip Information

PROCESS: BICMOS

PMIC with Ultra-Low Iq Regulators, Charger, Fuel Gauge, and Haptic Driver for Small Li+ Systems

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/19	Initial release	—
1	7/20	Updated the title, Table 201–204, and added MAX20353BEWN+ and MAX20353BEWN+T to the <i>Ordering Information</i> table	1–153
2	2/21	Updated Tables 201–204, and added MAX20353CEWN+ and MAX20353CEWN+T to the <i>Ordering Information</i> table	146–152

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.