FAIRCHILD

SEMICONDUCTOR

April 2001 Revised June 2002

74LVT32374 • 74LVTH32374 Low Voltage 32-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

The LVT32374 and LVTH32374 contain thirty-two noninverting D-type flip-flops with 3-STATE outputs and are intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 32-bit operation.

The LVTH32374 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These flip-flops are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT32374 and LVTH32374 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at $5V V_{CC}$
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH32374)
- Also available without bushold feature (74LVT32374)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- ESD performance:
- Human-body model > 2000V Machine model > 200V Charged-device model > 1000V
- Packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

Ordering Code:

© 2002 Fairchild Semiconductor Corporation DS500452

Connection	Diagram
	123456
٨	000000
B	000000
0	000000
	000000
ш	000000
ш	000000
ហ	000000
т	000000
ر	000000
¥	000000
L	000000
Σ	000000
z	000000
<u>ط</u>	000000
ч	000000
μ	000000
	(Top Thru View)

Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
CPn	Clock Pulse Input
I ₀ –I ₃₁	Inputs
O ₀ -O ₃₁	3-STATE Outputs

FBGA Pin Assignments

	1	2	3	4	5	6
Α	0 ₁	O ₀	OE ₁	CP ₁	I ₀	I ₁
В	O ₃	O ₂	GND	GND	l ₂	l ₃
С	0 ₅	0 ₄	V _{CC1}	V _{CC1}	I ₄	۱ ₅
D	0 ₇	0 ₆	GND	GND	I ₆	1 ₇
E	O ₉	O ₈	GND	GND	I ₈	l ₉
F	0 ₁₁	0 ₁₀	V _{CC1}	V _{CC1}	I ₁₀	I ₁₁
G	O ₁₃	O ₁₂	GND	GND	I ₁₂	I ₁₃
н	O ₁₄	O ₁₅	OE ₂	CP ₂	I ₁₅	I ₁₄
J	O ₁₇	O ₁₆	OE ₃	CP_3	I ₁₆	I ₁₇
к	0 ₁₉	0 ₁₈	GND	GND	I ₁₈	I ₁₉
L	O ₂₁	O ₂₀	V _{CC2}	V _{CC2}	I ₂₀	I ₂₁
м	O ₂₃	O ₂₂	GND	GND	I ₂₂	I ₂₃
N	O ₂₅	O ₂₄	GND	GND	I ₂₄	I ₂₅
Р	O ₂₇	O ₂₆	V _{CC2}	V _{CC2}	I ₂₆	I ₂₇
R	O ₂₉	O ₂₈	GND	GND	I ₂₈	I ₂₉
Т	O ₃₀	O ₃₁	OE ₄	CP_4	I ₃₁	I ₃₀

Functional Description

The LVT32374 and LVTH32374 consist of thirty-two edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 32-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CPn) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

Truth Tables

	Inputs		Outputs]		Inputs		Outputs
CP ₁	OE ₁	I ₀ —I ₇	0 ₀ –0 ₇		CP2	OE ₂	I ₈ –I ₁₅	0 ₈ -0 ₁₅
~	L	Н	н		~	L	Н	Н
~	L	L	L		~	L	L	L
L	L	Х	Oo		L	L	Х	Oo
Х	Н	Х	Z		Х	Н	Х	Z
	Inputs		Outputs	1		Inputs		Outputs
CP3	OE ₃	I ₁₆ –I ₂₃	0 ₁₆ –0 ₂₃		CP4	OE ₄	I ₂₄ –I ₃₁	0 ₂₄ –0 ₃₁
~	L	Н	н		\ \	L	Н	Н
~	L	L	L		~	L	L	L
L	L	х	Oo		L	L	Х	Oo
Х	н	Х	Z		Х	Н	Х	Z
H = HIGH Voltage L = LOW Voltage L					= HIGH Impedar _o = Previous O _o I		OW of CP	

www.fairchildsemi.com

X = Immaterial

74LVT32374 • 74LVTH32374

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
/ _{cc}	Supply Voltage	-0.5 to +4.6		V
′ı	DC Input Voltage	-0.5 to +7.0		V
′o	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	v
к	DC Input Diode Current	-50	V _I < GND	mA
ЭК	DC Output Diode Current	-50	V _O < GND	mA
C	DC Output Current	64	V _O > V _{CC} Output at HIGH State	
	F	128	V _O > V _{CC} Output at LOW State	mA
00	DC Supply Current per Supply Pin	±64		mA
GND	DC Ground Current per Ground Pin	±128		mA
STG	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH Level Output Current		-32	mA
I _{OL}	LOW Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V - 2.0V$, $V_{CC} = 3.0V$	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied. Note 4: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	$T_A = -40^{\circ}C$	C to +85°C	Units	Conditions
Symbol	Farameter		(V)	Min	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7–3.6	2.0		V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7–3.6		0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{ОН}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2			I _{OH} = -100 μA
			2.7	2.4		V	I _{OH} = -8 mA
			3.0	2.0			$I_{OH} = -32 \text{ mA}$
V _{OL}	Output LOW Voltage		2.7		0.2		I _{OL} = 100 μA
			2.7		0.5		I _{OL} = 24 mA
			3.0		0.4	V	I _{OL} = 16 mA
			3.0		0.5		I _{OL} = 32 mA
			3.0		0.55		I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	V _I = 0.8V
(Note 5)				-75		μΑ	V _I = 2.0V
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 6)
(Note 5)	Current to Change State			-500		P	(Note 7)
l _l	Input Current		3.6		10		$V_{I} = 5.5V$
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6		-5	μι	$V_I = 0V$
		Data P ino			1		$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0		±100	μA	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE		0–1.5V		±100	μA	$V_0 = 0.5V \text{ to } 3.0V$
	Output Current		0		2.00	part	$V_{I} = GND \text{ or } V_{CC}$
l _{ozl}	3-STATE Output Leakage Current		3.6		-5	μΑ	$V_0 = 0.5V$
I _{OZH}	3-STATE Output Leakage Current		3.6		5	μΑ	$V_0 = 3.0V$
I _{OZH} +	3-STATE Output Leakage Current		3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$

DC Electrical Characteristics (Continued)

Symbol	Paramete	Boromotor		V _{cc}		$T_{A} = -40^{\circ}$	T $_A = -40^{\circ}$ C to $+85^{\circ}$ C		Conditions
Symbol	(V) Min Max	Max	Units	conditions					
I _{CCH}	Power Supply Current	(V _{CC1} or V _{CC2})	3.6		0.19	mA	Outputs HIGH		
I _{CCL}	Power Supply Current	(V _{CC1} or V _{CC2})	3.6		5	mA	Outputs LOW		
I _{CCZ}	Power Supply Current	(V _{CC1} or V _{CC2})	3.6		0.19	mA	Outputs Disabled		
I _{CCZ} +	Power Supply Current	(V _{CC1} or V _{CC2})	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,		
						1	Outputs Disabled		
ΔI_{CC}	Increase in Power Supply Cu	rrent (V _{CC1} or V _{CC2})				0	One Input at V _{CC} – 0.6V		
	(Note 8)		3.6		0.2	mA	Other Inputs at V _{CC} or GND		

Note 5: Applies to bushold version only (74LVTH32374).

Note 6: An external driver must sink at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	Vcc	$T_A = 25^{\circ}C$			Units	Conditions
Cymbol	i arameter	(V)	Min	Тур	Max	Onita	$\textbf{C}_{\textbf{L}}=\textbf{50}~\textbf{pF},~\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n–1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to +85°C, $\textbf{C}_{\textbf{L}}=\textbf{50}$ pF, $\textbf{R}_{\textbf{L}}=\textbf{500}\Omega$					
Symbol	Parameter	V _{CC} = 3.3	$3V \pm 0.3V$	V _{CC} =	Units		
		Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	160		160		MHz	
t _{PHL}	Propagation Delay	1.9	4.3	1.9	4.6		
t _{PLH}	CP to On	1.6	4.5	1.6	5.2	ns	
t _{PZL}	Output Enable Time	1.3	4.4	1.3	5.0	20	
t _{PZH}		1.0	4.5	1.0	5.4	ns	
t _{PLZ}	Output Disable Time	1.5	4.6	1.5	4.8	20	
t _{PHZ}		2.0	5.0	2.0	5.4	ns	
t _S	Setup Time	1.8		2.0		ns	
t _H	Hold Time	0.8		0.1		ns	
t _W	Pulse Width	3.0		3.0		ns	

Capacitance (Note 11)

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = OPEN, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V, V_O = 0V \text{ or } V_{CC}$	8	pF

Note 11: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

